ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptiniseg Unicode version

Theorem mptiniseg 5196
Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
dmmpo.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
mptiniseg  |-  ( C  e.  V  ->  ( `' F " { C } )  =  {
x  e.  A  |  B  =  C }
)
Distinct variable groups:    x, C    x, V
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem mptiniseg
StepHypRef Expression
1 dmmpo.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
21mptpreima 5195 . 2  |-  ( `' F " { C } )  =  {
x  e.  A  |  B  e.  { C } }
3 elsn2g 3676 . . 3  |-  ( C  e.  V  ->  ( B  e.  { C } 
<->  B  =  C ) )
43rabbidv 2765 . 2  |-  ( C  e.  V  ->  { x  e.  A  |  B  e.  { C } }  =  { x  e.  A  |  B  =  C } )
52, 4eqtrid 2252 1  |-  ( C  e.  V  ->  ( `' F " { C } )  =  {
x  e.  A  |  B  =  C }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   {crab 2490   {csn 3643    |-> cmpt 4121   `'ccnv 4692   "cima 4696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-mpt 4123  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator