ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptiniseg Unicode version

Theorem mptiniseg 5178
Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
dmmpo.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
mptiniseg  |-  ( C  e.  V  ->  ( `' F " { C } )  =  {
x  e.  A  |  B  =  C }
)
Distinct variable groups:    x, C    x, V
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem mptiniseg
StepHypRef Expression
1 dmmpo.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
21mptpreima 5177 . 2  |-  ( `' F " { C } )  =  {
x  e.  A  |  B  e.  { C } }
3 elsn2g 3666 . . 3  |-  ( C  e.  V  ->  ( B  e.  { C } 
<->  B  =  C ) )
43rabbidv 2761 . 2  |-  ( C  e.  V  ->  { x  e.  A  |  B  e.  { C } }  =  { x  e.  A  |  B  =  C } )
52, 4eqtrid 2250 1  |-  ( C  e.  V  ->  ( `' F " { C } )  =  {
x  e.  A  |  B  =  C }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   {crab 2488   {csn 3633    |-> cmpt 4106   `'ccnv 4675   "cima 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-mpt 4108  df-xp 4682  df-rel 4683  df-cnv 4684  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator