ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptiniseg Unicode version

Theorem mptiniseg 5115
Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
dmmpo.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
mptiniseg  |-  ( C  e.  V  ->  ( `' F " { C } )  =  {
x  e.  A  |  B  =  C }
)
Distinct variable groups:    x, C    x, V
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem mptiniseg
StepHypRef Expression
1 dmmpo.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
21mptpreima 5114 . 2  |-  ( `' F " { C } )  =  {
x  e.  A  |  B  e.  { C } }
3 elsn2g 3622 . . 3  |-  ( C  e.  V  ->  ( B  e.  { C } 
<->  B  =  C ) )
43rabbidv 2724 . 2  |-  ( C  e.  V  ->  { x  e.  A  |  B  e.  { C } }  =  { x  e.  A  |  B  =  C } )
52, 4eqtrid 2220 1  |-  ( C  e.  V  ->  ( `' F " { C } )  =  {
x  e.  A  |  B  =  C }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146   {crab 2457   {csn 3589    |-> cmpt 4059   `'ccnv 4619   "cima 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-mpt 4061  df-xp 4626  df-rel 4627  df-cnv 4628  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator