ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptiniseg Unicode version

Theorem mptiniseg 5098
Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
dmmpo.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
mptiniseg  |-  ( C  e.  V  ->  ( `' F " { C } )  =  {
x  e.  A  |  B  =  C }
)
Distinct variable groups:    x, C    x, V
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem mptiniseg
StepHypRef Expression
1 dmmpo.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
21mptpreima 5097 . 2  |-  ( `' F " { C } )  =  {
x  e.  A  |  B  e.  { C } }
3 elsn2g 3609 . . 3  |-  ( C  e.  V  ->  ( B  e.  { C } 
<->  B  =  C ) )
43rabbidv 2715 . 2  |-  ( C  e.  V  ->  { x  e.  A  |  B  e.  { C } }  =  { x  e.  A  |  B  =  C } )
52, 4syl5eq 2211 1  |-  ( C  e.  V  ->  ( `' F " { C } )  =  {
x  e.  A  |  B  =  C }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   {crab 2448   {csn 3576    |-> cmpt 4043   `'ccnv 4603   "cima 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-mpt 4045  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator