| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzosplitsni | Unicode version | ||
| Description: Membership in a half-open range extended by a singleton. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzosplitsni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzosplitsn 10275 |
. . 3
| |
| 2 | 1 | eleq2d 2259 |
. 2
|
| 3 | elun 3295 |
. . 3
| |
| 4 | elsn2g 3647 |
. . . 4
| |
| 5 | 4 | orbi2d 791 |
. . 3
|
| 6 | 3, 5 | bitrid 192 |
. 2
|
| 7 | 2, 6 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4143 ax-pow 4199 ax-pr 4234 ax-un 4458 ax-setind 4561 ax-cnex 7942 ax-resscn 7943 ax-1cn 7944 ax-1re 7945 ax-icn 7946 ax-addcl 7947 ax-addrcl 7948 ax-mulcl 7949 ax-addcom 7951 ax-addass 7953 ax-distr 7955 ax-i2m1 7956 ax-0lt1 7957 ax-0id 7959 ax-rnegex 7960 ax-cnre 7962 ax-pre-ltirr 7963 ax-pre-ltwlin 7964 ax-pre-lttrn 7965 ax-pre-apti 7966 ax-pre-ltadd 7967 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2758 df-sbc 2982 df-csb 3077 df-dif 3150 df-un 3152 df-in 3154 df-ss 3161 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-int 3867 df-iun 3910 df-br 4026 df-opab 4087 df-mpt 4088 df-id 4318 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-rn 4662 df-res 4663 df-ima 4664 df-iota 5203 df-fun 5244 df-fn 5245 df-f 5246 df-fv 5250 df-riota 5859 df-ov 5907 df-oprab 5908 df-mpo 5909 df-1st 6173 df-2nd 6174 df-pnf 8035 df-mnf 8036 df-xr 8037 df-ltxr 8038 df-le 8039 df-sub 8171 df-neg 8172 df-inn 8961 df-n0 9218 df-z 9295 df-uz 9570 df-fz 10051 df-fzo 10185 |
| This theorem is referenced by: fzostep1 10279 |
| Copyright terms: Public domain | W3C validator |