ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difinfsnlem Unicode version

Theorem difinfsnlem 6936
Description: Lemma for difinfsn 6937. The case where we need to swap  B and  (inr `  (/) ) in building the mapping  G. (Contributed by Jim Kingdon, 9-Aug-2023.)
Hypotheses
Ref Expression
difinfsnlem.dc  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
difinfsnlem.b  |-  ( ph  ->  B  e.  A )
difinfsnlem.f  |-  ( ph  ->  F : ( om 1o ) -1-1-> A )
difinfsnlem.fb  |-  ( ph  ->  ( F `  (inr `  (/) ) )  =/=  B
)
difinfsnlem.g  |-  G  =  ( n  e.  om  |->  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) ) )
Assertion
Ref Expression
difinfsnlem  |-  ( ph  ->  G : om -1-1-> ( A  \  { B } ) )
Distinct variable groups:    A, n, x, y    B, n, x, y   
n, F, x, y    ph, n
Allowed substitution hints:    ph( x, y)    G( x, y, n)

Proof of Theorem difinfsnlem
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 difinfsnlem.f . . . . . . . 8  |-  ( ph  ->  F : ( om 1o ) -1-1-> A )
2 f1f 5286 . . . . . . . 8  |-  ( F : ( om 1o )
-1-1-> A  ->  F :
( om 1o ) --> A )
31, 2syl 14 . . . . . . 7  |-  ( ph  ->  F : ( om 1o ) --> A )
4 0lt1o 6291 . . . . . . . 8  |-  (/)  e.  1o
5 djurcl 6889 . . . . . . . 8  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( om 1o ) )
64, 5mp1i 10 . . . . . . 7  |-  ( ph  ->  (inr `  (/) )  e.  ( om 1o ) )
73, 6ffvelrnd 5510 . . . . . 6  |-  ( ph  ->  ( F `  (inr `  (/) ) )  e.  A
)
8 difinfsnlem.fb . . . . . . 7  |-  ( ph  ->  ( F `  (inr `  (/) ) )  =/=  B
)
9 elsni 3511 . . . . . . . 8  |-  ( ( F `  (inr `  (/) ) )  e.  { B }  ->  ( F `
 (inr `  (/) ) )  =  B )
109necon3ai 2331 . . . . . . 7  |-  ( ( F `  (inr `  (/) ) )  =/=  B  ->  -.  ( F `  (inr `  (/) ) )  e. 
{ B } )
118, 10syl 14 . . . . . 6  |-  ( ph  ->  -.  ( F `  (inr `  (/) ) )  e. 
{ B } )
127, 11eldifd 3047 . . . . 5  |-  ( ph  ->  ( F `  (inr `  (/) ) )  e.  ( A  \  { B } ) )
1312ad2antrr 477 . . . 4  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  (inl `  n
) )  =  B )  ->  ( F `  (inr `  (/) ) )  e.  ( A  \  { B } ) )
143adantr 272 . . . . . . 7  |-  ( (
ph  /\  n  e.  om )  ->  F :
( om 1o ) --> A )
15 djulcl 6888 . . . . . . . 8  |-  ( n  e.  om  ->  (inl `  n )  e.  ( om 1o ) )
1615adantl 273 . . . . . . 7  |-  ( (
ph  /\  n  e.  om )  ->  (inl `  n
)  e.  ( om 1o ) )
1714, 16ffvelrnd 5510 . . . . . 6  |-  ( (
ph  /\  n  e.  om )  ->  ( F `  (inl `  n )
)  e.  A )
1817adantr 272 . . . . 5  |-  ( ( ( ph  /\  n  e.  om )  /\  -.  ( F `  (inl `  n ) )  =  B )  ->  ( F `  (inl `  n
) )  e.  A
)
19 elsni 3511 . . . . . . 7  |-  ( ( F `  (inl `  n ) )  e. 
{ B }  ->  ( F `  (inl `  n ) )  =  B )
2019con3i 604 . . . . . 6  |-  ( -.  ( F `  (inl `  n ) )  =  B  ->  -.  ( F `  (inl `  n
) )  e.  { B } )
2120adantl 273 . . . . 5  |-  ( ( ( ph  /\  n  e.  om )  /\  -.  ( F `  (inl `  n ) )  =  B )  ->  -.  ( F `  (inl `  n ) )  e. 
{ B } )
2218, 21eldifd 3047 . . . 4  |-  ( ( ( ph  /\  n  e.  om )  /\  -.  ( F `  (inl `  n ) )  =  B )  ->  ( F `  (inl `  n
) )  e.  ( A  \  { B } ) )
23 difinfsnlem.dc . . . . . 6  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2423adantr 272 . . . . 5  |-  ( (
ph  /\  n  e.  om )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
25 difinfsnlem.b . . . . . . 7  |-  ( ph  ->  B  e.  A )
2625adantr 272 . . . . . 6  |-  ( (
ph  /\  n  e.  om )  ->  B  e.  A )
27 eqeq12 2127 . . . . . . . 8  |-  ( ( x  =  ( F `
 (inl `  n
) )  /\  y  =  B )  ->  (
x  =  y  <->  ( F `  (inl `  n )
)  =  B ) )
2827dcbid 806 . . . . . . 7  |-  ( ( x  =  ( F `
 (inl `  n
) )  /\  y  =  B )  ->  (DECID  x  =  y  <-> DECID  ( F `  (inl `  n ) )  =  B ) )
2928rspc2gv 2771 . . . . . 6  |-  ( ( ( F `  (inl `  n ) )  e.  A  /\  B  e.  A )  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID  ( F `  (inl `  n ) )  =  B ) )
3017, 26, 29syl2anc 406 . . . . 5  |-  ( (
ph  /\  n  e.  om )  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID 
( F `  (inl `  n ) )  =  B ) )
3124, 30mpd 13 . . . 4  |-  ( (
ph  /\  n  e.  om )  -> DECID  ( F `  (inl `  n ) )  =  B )
3213, 22, 31ifcldadc 3467 . . 3  |-  ( (
ph  /\  n  e.  om )  ->  if (
( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  e.  ( A 
\  { B }
) )
3332ralrimiva 2479 . 2  |-  ( ph  ->  A. n  e.  om  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  e.  ( A  \  { B } ) )
34 simplr 502 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( F `  (inl `  n ) )  =  B )
35 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( F `  (inl `  m ) )  =  B )
3634, 35eqtr4d 2150 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( F `  (inl `  n ) )  =  ( F `  (inl `  m ) ) )
371ad3antrrr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  ->  F : ( om 1o )
-1-1-> A )
3815ad2antrl 479 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
(inl `  n )  e.  ( om 1o ) )
3938ad2antrr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
(inl `  n )  e.  ( om 1o ) )
40 simprr 504 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  ->  m  e.  om )
4140ad2antrr 477 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  ->  m  e.  om )
42 djulcl 6888 . . . . . . . . . 10  |-  ( m  e.  om  ->  (inl `  m )  e.  ( om 1o ) )
4341, 42syl 14 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
(inl `  m )  e.  ( om 1o ) )
44 f1veqaeq 5624 . . . . . . . . 9  |-  ( ( F : ( om 1o ) -1-1-> A  /\  (
(inl `  n )  e.  ( om 1o )  /\  (inl `  m )  e.  ( om 1o ) ) )  ->  ( ( F `  (inl `  n
) )  =  ( F `  (inl `  m ) )  -> 
(inl `  n )  =  (inl `  m )
) )
4537, 39, 43, 44syl12anc 1197 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( ( F `  (inl `  n ) )  =  ( F `  (inl `  m ) )  ->  (inl `  n
)  =  (inl `  m ) ) )
4636, 45mpd 13 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
(inl `  n )  =  (inl `  m )
)
47 inl11 6902 . . . . . . . 8  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( (inl `  n
)  =  (inl `  m )  <->  n  =  m ) )
4847ad3antlr 482 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( (inl `  n
)  =  (inl `  m )  <->  n  =  m ) )
4946, 48mpbid 146 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  ->  n  =  m )
5049a1d 22 . . . . 5  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( if ( ( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
5140ad2antrr 477 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  m  e.  om )
52 djune 6915 . . . . . . . . . . 11  |-  ( ( m  e.  om  /\  (/) 
e.  1o )  -> 
(inl `  m )  =/=  (inr `  (/) ) )
5352necomd 2368 . . . . . . . . . 10  |-  ( ( m  e.  om  /\  (/) 
e.  1o )  -> 
(inr `  (/) )  =/=  (inl `  m )
)
5451, 4, 53sylancl 407 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  (inr `  (/) )  =/=  (inl `  m )
)
5554neneqd 2303 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  -.  (inr `  (/) )  =  (inl `  m ) )
561ad3antrrr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  F :
( om 1o ) -1-1-> A
)
574, 5mp1i 10 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  (inr `  (/) )  e.  ( om 1o ) )
5840, 42syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
(inl `  m )  e.  ( om 1o ) )
5958ad2antrr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  (inl `  m
)  e.  ( om 1o ) )
60 f1veqaeq 5624 . . . . . . . . 9  |-  ( ( F : ( om 1o ) -1-1-> A  /\  (
(inr `  (/) )  e.  ( om 1o )  /\  (inl `  m )  e.  ( om 1o ) ) )  ->  ( ( F `  (inr `  (/) ) )  =  ( F `  (inl `  m ) )  ->  (inr `  (/) )  =  (inl `  m )
) )
6156, 57, 59, 60syl12anc 1197 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  ( ( F `  (inr `  (/) ) )  =  ( F `  (inl `  m ) )  ->  (inr `  (/) )  =  (inl `  m )
) )
6255, 61mtod 635 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  -.  ( F `  (inr `  (/) ) )  =  ( F `  (inl `  m ) ) )
63 simplr 502 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  ( F `  (inl `  n )
)  =  B )
6463iftrued 3447 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  ( F `
 (inr `  (/) ) ) )
65 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  -.  ( F `  (inl `  m
) )  =  B )
6665iffalsed 3450 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  =  ( F `
 (inl `  m
) ) )
6764, 66eqeq12d 2129 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  <->  ( F `  (inr `  (/) ) )  =  ( F `  (inl `  m ) ) ) )
6862, 67mtbird 645 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  -.  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) ) )
6968pm2.21d 591 . . . . 5  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
7023adantr 272 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
713adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  ->  F : ( om 1o ) --> A )
7271, 58ffvelrnd 5510 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
( F `  (inl `  m ) )  e.  A )
7325adantr 272 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  ->  B  e.  A )
74 eqeq12 2127 . . . . . . . . . . 11  |-  ( ( x  =  ( F `
 (inl `  m
) )  /\  y  =  B )  ->  (
x  =  y  <->  ( F `  (inl `  m )
)  =  B ) )
7574dcbid 806 . . . . . . . . . 10  |-  ( ( x  =  ( F `
 (inl `  m
) )  /\  y  =  B )  ->  (DECID  x  =  y  <-> DECID  ( F `  (inl `  m ) )  =  B ) )
7675rspc2gv 2771 . . . . . . . . 9  |-  ( ( ( F `  (inl `  m ) )  e.  A  /\  B  e.  A )  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID  ( F `  (inl `  m ) )  =  B ) )
7772, 73, 76syl2anc 406 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID  ( F `  (inl `  m
) )  =  B ) )
7870, 77mpd 13 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> DECID  ( F `  (inl `  m
) )  =  B )
79 exmiddc 804 . . . . . . 7  |-  (DECID  ( F `
 (inl `  m
) )  =  B  ->  ( ( F `
 (inl `  m
) )  =  B  \/  -.  ( F `
 (inl `  m
) )  =  B ) )
8078, 79syl 14 . . . . . 6  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
( ( F `  (inl `  m ) )  =  B  \/  -.  ( F `  (inl `  m ) )  =  B ) )
8180adantr 272 . . . . 5  |-  ( ( ( ph  /\  (
n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  ->  ( ( F `
 (inl `  m
) )  =  B  \/  -.  ( F `
 (inl `  m
) )  =  B ) )
8250, 69, 81mpjaodan 770 . . . 4  |-  ( ( ( ph  /\  (
n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
83 simprl 503 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  ->  n  e.  om )
8483ad2antrr 477 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  n  e.  om )
85 djune 6915 . . . . . . . . . 10  |-  ( ( n  e.  om  /\  (/) 
e.  1o )  -> 
(inl `  n )  =/=  (inr `  (/) ) )
8684, 4, 85sylancl 407 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  (inl `  n
)  =/=  (inr `  (/) ) )
8786neneqd 2303 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  -.  (inl `  n )  =  (inr
`  (/) ) )
881ad3antrrr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  F :
( om 1o ) -1-1-> A
)
8938ad2antrr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  (inl `  n
)  e.  ( om 1o ) )
904, 5mp1i 10 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  (inr `  (/) )  e.  ( om 1o ) )
91 f1veqaeq 5624 . . . . . . . . 9  |-  ( ( F : ( om 1o ) -1-1-> A  /\  (
(inl `  n )  e.  ( om 1o )  /\  (inr `  (/) )  e.  ( om 1o ) ) )  ->  ( ( F `
 (inl `  n
) )  =  ( F `  (inr `  (/) ) )  ->  (inl `  n )  =  (inr
`  (/) ) ) )
9288, 89, 90, 91syl12anc 1197 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  ( ( F `  (inl `  n
) )  =  ( F `  (inr `  (/) ) )  ->  (inl `  n )  =  (inr
`  (/) ) ) )
9387, 92mtod 635 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  -.  ( F `  (inl `  n
) )  =  ( F `  (inr `  (/) ) ) )
94 simplr 502 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  -.  ( F `  (inl `  n
) )  =  B )
9594iffalsed 3450 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  ( F `
 (inl `  n
) ) )
96 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  ( F `  (inl `  m )
)  =  B )
9796iftrued 3447 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  =  ( F `
 (inr `  (/) ) ) )
9895, 97eqeq12d 2129 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  <->  ( F `  (inl `  n ) )  =  ( F `  (inr `  (/) ) ) ) )
9993, 98mtbird 645 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  -.  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) ) )
10099pm2.21d 591 . . . . 5  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
101 simplr 502 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  -.  ( F `  (inl `  n
) )  =  B )
102101iffalsed 3450 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  ( F `
 (inl `  n
) ) )
103 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  -.  ( F `  (inl `  m
) )  =  B )
104103iffalsed 3450 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  =  ( F `
 (inl `  m
) ) )
105102, 104eqeq12d 2129 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  <->  ( F `  (inl `  n ) )  =  ( F `  (inl `  m ) ) ) )
1061ad3antrrr 481 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  F :
( om 1o ) -1-1-> A
)
10738ad2antrr 477 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  (inl `  n
)  e.  ( om 1o ) )
10858ad2antrr 477 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  (inl `  m
)  e.  ( om 1o ) )
109106, 107, 108, 44syl12anc 1197 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  ( ( F `  (inl `  n
) )  =  ( F `  (inl `  m ) )  -> 
(inl `  n )  =  (inl `  m )
) )
110105, 109sylbid 149 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  (inl `  n
)  =  (inl `  m ) ) )
11147ad3antlr 482 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  ( (inl `  n )  =  (inl
`  m )  <->  n  =  m ) )
112110, 111sylibd 148 . . . . 5  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
11380adantr 272 . . . . 5  |-  ( ( ( ph  /\  (
n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  ->  ( ( F `  (inl `  m
) )  =  B  \/  -.  ( F `
 (inl `  m
) )  =  B ) )
114100, 112, 113mpjaodan 770 . . . 4  |-  ( ( ( ph  /\  (
n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
115 exmiddc 804 . . . . . 6  |-  (DECID  ( F `
 (inl `  n
) )  =  B  ->  ( ( F `
 (inl `  n
) )  =  B  \/  -.  ( F `
 (inl `  n
) )  =  B ) )
11631, 115syl 14 . . . . 5  |-  ( (
ph  /\  n  e.  om )  ->  ( ( F `  (inl `  n
) )  =  B  \/  -.  ( F `
 (inl `  n
) )  =  B ) )
117116adantrr 468 . . . 4  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
( ( F `  (inl `  n ) )  =  B  \/  -.  ( F `  (inl `  n ) )  =  B ) )
11882, 114, 117mpjaodan 770 . . 3  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
( if ( ( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
119118ralrimivva 2488 . 2  |-  ( ph  ->  A. n  e.  om  A. m  e.  om  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
120 difinfsnlem.g . . 3  |-  G  =  ( n  e.  om  |->  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) ) )
121 2fveq3 5380 . . . . 5  |-  ( n  =  m  ->  ( F `  (inl `  n
) )  =  ( F `  (inl `  m ) ) )
122121eqeq1d 2123 . . . 4  |-  ( n  =  m  ->  (
( F `  (inl `  n ) )  =  B  <->  ( F `  (inl `  m ) )  =  B ) )
123122, 121ifbieq2d 3462 . . 3  |-  ( n  =  m  ->  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) ) )
124120, 123f1mpt 5626 . 2  |-  ( G : om -1-1-> ( A 
\  { B }
)  <->  ( A. n  e.  om  if ( ( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  e.  ( A 
\  { B }
)  /\  A. n  e.  om  A. m  e. 
om  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) ) )
12533, 119, 124sylanbrc 411 1  |-  ( ph  ->  G : om -1-1-> ( A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 680  DECID wdc 802    = wceq 1314    e. wcel 1463    =/= wne 2282   A.wral 2390    \ cdif 3034   (/)c0 3329   ifcif 3440   {csn 3493    |-> cmpt 3949   omcom 4464   -->wf 5077   -1-1->wf1 5078   ` cfv 5081   1oc1o 6260   ⊔ cdju 6874  inlcinl 6882  inrcinr 6883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fv 5089  df-1st 5992  df-1o 6267  df-dju 6875  df-inl 6884  df-inr 6885
This theorem is referenced by:  difinfsn  6937
  Copyright terms: Public domain W3C validator