ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difinfsnlem Unicode version

Theorem difinfsnlem 7158
Description: Lemma for difinfsn 7159. The case where we need to swap  B and  (inr `  (/) ) in building the mapping  G. (Contributed by Jim Kingdon, 9-Aug-2023.)
Hypotheses
Ref Expression
difinfsnlem.dc  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
difinfsnlem.b  |-  ( ph  ->  B  e.  A )
difinfsnlem.f  |-  ( ph  ->  F : ( om 1o ) -1-1-> A )
difinfsnlem.fb  |-  ( ph  ->  ( F `  (inr `  (/) ) )  =/=  B
)
difinfsnlem.g  |-  G  =  ( n  e.  om  |->  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) ) )
Assertion
Ref Expression
difinfsnlem  |-  ( ph  ->  G : om -1-1-> ( A  \  { B } ) )
Distinct variable groups:    A, n, x, y    B, n, x, y   
n, F, x, y    ph, n
Allowed substitution hints:    ph( x, y)    G( x, y, n)

Proof of Theorem difinfsnlem
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 difinfsnlem.f . . . . . . . 8  |-  ( ph  ->  F : ( om 1o ) -1-1-> A )
2 f1f 5459 . . . . . . . 8  |-  ( F : ( om 1o )
-1-1-> A  ->  F :
( om 1o ) --> A )
31, 2syl 14 . . . . . . 7  |-  ( ph  ->  F : ( om 1o ) --> A )
4 0lt1o 6493 . . . . . . . 8  |-  (/)  e.  1o
5 djurcl 7111 . . . . . . . 8  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( om 1o ) )
64, 5mp1i 10 . . . . . . 7  |-  ( ph  ->  (inr `  (/) )  e.  ( om 1o ) )
73, 6ffvelcdmd 5694 . . . . . 6  |-  ( ph  ->  ( F `  (inr `  (/) ) )  e.  A
)
8 difinfsnlem.fb . . . . . . 7  |-  ( ph  ->  ( F `  (inr `  (/) ) )  =/=  B
)
9 elsni 3636 . . . . . . . 8  |-  ( ( F `  (inr `  (/) ) )  e.  { B }  ->  ( F `
 (inr `  (/) ) )  =  B )
109necon3ai 2413 . . . . . . 7  |-  ( ( F `  (inr `  (/) ) )  =/=  B  ->  -.  ( F `  (inr `  (/) ) )  e. 
{ B } )
118, 10syl 14 . . . . . 6  |-  ( ph  ->  -.  ( F `  (inr `  (/) ) )  e. 
{ B } )
127, 11eldifd 3163 . . . . 5  |-  ( ph  ->  ( F `  (inr `  (/) ) )  e.  ( A  \  { B } ) )
1312ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  (inl `  n
) )  =  B )  ->  ( F `  (inr `  (/) ) )  e.  ( A  \  { B } ) )
143adantr 276 . . . . . . 7  |-  ( (
ph  /\  n  e.  om )  ->  F :
( om 1o ) --> A )
15 djulcl 7110 . . . . . . . 8  |-  ( n  e.  om  ->  (inl `  n )  e.  ( om 1o ) )
1615adantl 277 . . . . . . 7  |-  ( (
ph  /\  n  e.  om )  ->  (inl `  n
)  e.  ( om 1o ) )
1714, 16ffvelcdmd 5694 . . . . . 6  |-  ( (
ph  /\  n  e.  om )  ->  ( F `  (inl `  n )
)  e.  A )
1817adantr 276 . . . . 5  |-  ( ( ( ph  /\  n  e.  om )  /\  -.  ( F `  (inl `  n ) )  =  B )  ->  ( F `  (inl `  n
) )  e.  A
)
19 elsni 3636 . . . . . . 7  |-  ( ( F `  (inl `  n ) )  e. 
{ B }  ->  ( F `  (inl `  n ) )  =  B )
2019con3i 633 . . . . . 6  |-  ( -.  ( F `  (inl `  n ) )  =  B  ->  -.  ( F `  (inl `  n
) )  e.  { B } )
2120adantl 277 . . . . 5  |-  ( ( ( ph  /\  n  e.  om )  /\  -.  ( F `  (inl `  n ) )  =  B )  ->  -.  ( F `  (inl `  n ) )  e. 
{ B } )
2218, 21eldifd 3163 . . . 4  |-  ( ( ( ph  /\  n  e.  om )  /\  -.  ( F `  (inl `  n ) )  =  B )  ->  ( F `  (inl `  n
) )  e.  ( A  \  { B } ) )
23 difinfsnlem.dc . . . . . 6  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2423adantr 276 . . . . 5  |-  ( (
ph  /\  n  e.  om )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
25 difinfsnlem.b . . . . . . 7  |-  ( ph  ->  B  e.  A )
2625adantr 276 . . . . . 6  |-  ( (
ph  /\  n  e.  om )  ->  B  e.  A )
27 eqeq12 2206 . . . . . . . 8  |-  ( ( x  =  ( F `
 (inl `  n
) )  /\  y  =  B )  ->  (
x  =  y  <->  ( F `  (inl `  n )
)  =  B ) )
2827dcbid 839 . . . . . . 7  |-  ( ( x  =  ( F `
 (inl `  n
) )  /\  y  =  B )  ->  (DECID  x  =  y  <-> DECID  ( F `  (inl `  n ) )  =  B ) )
2928rspc2gv 2876 . . . . . 6  |-  ( ( ( F `  (inl `  n ) )  e.  A  /\  B  e.  A )  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID  ( F `  (inl `  n ) )  =  B ) )
3017, 26, 29syl2anc 411 . . . . 5  |-  ( (
ph  /\  n  e.  om )  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID 
( F `  (inl `  n ) )  =  B ) )
3124, 30mpd 13 . . . 4  |-  ( (
ph  /\  n  e.  om )  -> DECID  ( F `  (inl `  n ) )  =  B )
3213, 22, 31ifcldadc 3586 . . 3  |-  ( (
ph  /\  n  e.  om )  ->  if (
( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  e.  ( A 
\  { B }
) )
3332ralrimiva 2567 . 2  |-  ( ph  ->  A. n  e.  om  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  e.  ( A  \  { B } ) )
34 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( F `  (inl `  n ) )  =  B )
35 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( F `  (inl `  m ) )  =  B )
3634, 35eqtr4d 2229 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( F `  (inl `  n ) )  =  ( F `  (inl `  m ) ) )
371ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  ->  F : ( om 1o )
-1-1-> A )
3815ad2antrl 490 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
(inl `  n )  e.  ( om 1o ) )
3938ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
(inl `  n )  e.  ( om 1o ) )
40 simprr 531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  ->  m  e.  om )
4140ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  ->  m  e.  om )
42 djulcl 7110 . . . . . . . . . 10  |-  ( m  e.  om  ->  (inl `  m )  e.  ( om 1o ) )
4341, 42syl 14 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
(inl `  m )  e.  ( om 1o ) )
44 f1veqaeq 5812 . . . . . . . . 9  |-  ( ( F : ( om 1o ) -1-1-> A  /\  (
(inl `  n )  e.  ( om 1o )  /\  (inl `  m )  e.  ( om 1o ) ) )  ->  ( ( F `  (inl `  n
) )  =  ( F `  (inl `  m ) )  -> 
(inl `  n )  =  (inl `  m )
) )
4537, 39, 43, 44syl12anc 1247 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( ( F `  (inl `  n ) )  =  ( F `  (inl `  m ) )  ->  (inl `  n
)  =  (inl `  m ) ) )
4636, 45mpd 13 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
(inl `  n )  =  (inl `  m )
)
47 inl11 7124 . . . . . . . 8  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( (inl `  n
)  =  (inl `  m )  <->  n  =  m ) )
4847ad3antlr 493 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( (inl `  n
)  =  (inl `  m )  <->  n  =  m ) )
4946, 48mpbid 147 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  ->  n  =  m )
5049a1d 22 . . . . 5  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( if ( ( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
5140ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  m  e.  om )
52 djune 7137 . . . . . . . . . . 11  |-  ( ( m  e.  om  /\  (/) 
e.  1o )  -> 
(inl `  m )  =/=  (inr `  (/) ) )
5352necomd 2450 . . . . . . . . . 10  |-  ( ( m  e.  om  /\  (/) 
e.  1o )  -> 
(inr `  (/) )  =/=  (inl `  m )
)
5451, 4, 53sylancl 413 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  (inr `  (/) )  =/=  (inl `  m )
)
5554neneqd 2385 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  -.  (inr `  (/) )  =  (inl `  m ) )
561ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  F :
( om 1o ) -1-1-> A
)
574, 5mp1i 10 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  (inr `  (/) )  e.  ( om 1o ) )
5840, 42syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
(inl `  m )  e.  ( om 1o ) )
5958ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  (inl `  m
)  e.  ( om 1o ) )
60 f1veqaeq 5812 . . . . . . . . 9  |-  ( ( F : ( om 1o ) -1-1-> A  /\  (
(inr `  (/) )  e.  ( om 1o )  /\  (inl `  m )  e.  ( om 1o ) ) )  ->  ( ( F `  (inr `  (/) ) )  =  ( F `  (inl `  m ) )  ->  (inr `  (/) )  =  (inl `  m )
) )
6156, 57, 59, 60syl12anc 1247 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  ( ( F `  (inr `  (/) ) )  =  ( F `  (inl `  m ) )  ->  (inr `  (/) )  =  (inl `  m )
) )
6255, 61mtod 664 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  -.  ( F `  (inr `  (/) ) )  =  ( F `  (inl `  m ) ) )
63 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  ( F `  (inl `  n )
)  =  B )
6463iftrued 3564 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  ( F `
 (inr `  (/) ) ) )
65 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  -.  ( F `  (inl `  m
) )  =  B )
6665iffalsed 3567 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  =  ( F `
 (inl `  m
) ) )
6764, 66eqeq12d 2208 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  <->  ( F `  (inr `  (/) ) )  =  ( F `  (inl `  m ) ) ) )
6862, 67mtbird 674 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  -.  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) ) )
6968pm2.21d 620 . . . . 5  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
7023adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
713adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  ->  F : ( om 1o ) --> A )
7271, 58ffvelcdmd 5694 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
( F `  (inl `  m ) )  e.  A )
7325adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  ->  B  e.  A )
74 eqeq12 2206 . . . . . . . . . . 11  |-  ( ( x  =  ( F `
 (inl `  m
) )  /\  y  =  B )  ->  (
x  =  y  <->  ( F `  (inl `  m )
)  =  B ) )
7574dcbid 839 . . . . . . . . . 10  |-  ( ( x  =  ( F `
 (inl `  m
) )  /\  y  =  B )  ->  (DECID  x  =  y  <-> DECID  ( F `  (inl `  m ) )  =  B ) )
7675rspc2gv 2876 . . . . . . . . 9  |-  ( ( ( F `  (inl `  m ) )  e.  A  /\  B  e.  A )  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID  ( F `  (inl `  m ) )  =  B ) )
7772, 73, 76syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID  ( F `  (inl `  m
) )  =  B ) )
7870, 77mpd 13 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> DECID  ( F `  (inl `  m
) )  =  B )
79 exmiddc 837 . . . . . . 7  |-  (DECID  ( F `
 (inl `  m
) )  =  B  ->  ( ( F `
 (inl `  m
) )  =  B  \/  -.  ( F `
 (inl `  m
) )  =  B ) )
8078, 79syl 14 . . . . . 6  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
( ( F `  (inl `  m ) )  =  B  \/  -.  ( F `  (inl `  m ) )  =  B ) )
8180adantr 276 . . . . 5  |-  ( ( ( ph  /\  (
n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  ->  ( ( F `
 (inl `  m
) )  =  B  \/  -.  ( F `
 (inl `  m
) )  =  B ) )
8250, 69, 81mpjaodan 799 . . . 4  |-  ( ( ( ph  /\  (
n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
83 simprl 529 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  ->  n  e.  om )
8483ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  n  e.  om )
85 djune 7137 . . . . . . . . . 10  |-  ( ( n  e.  om  /\  (/) 
e.  1o )  -> 
(inl `  n )  =/=  (inr `  (/) ) )
8684, 4, 85sylancl 413 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  (inl `  n
)  =/=  (inr `  (/) ) )
8786neneqd 2385 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  -.  (inl `  n )  =  (inr
`  (/) ) )
881ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  F :
( om 1o ) -1-1-> A
)
8938ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  (inl `  n
)  e.  ( om 1o ) )
904, 5mp1i 10 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  (inr `  (/) )  e.  ( om 1o ) )
91 f1veqaeq 5812 . . . . . . . . 9  |-  ( ( F : ( om 1o ) -1-1-> A  /\  (
(inl `  n )  e.  ( om 1o )  /\  (inr `  (/) )  e.  ( om 1o ) ) )  ->  ( ( F `
 (inl `  n
) )  =  ( F `  (inr `  (/) ) )  ->  (inl `  n )  =  (inr
`  (/) ) ) )
9288, 89, 90, 91syl12anc 1247 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  ( ( F `  (inl `  n
) )  =  ( F `  (inr `  (/) ) )  ->  (inl `  n )  =  (inr
`  (/) ) ) )
9387, 92mtod 664 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  -.  ( F `  (inl `  n
) )  =  ( F `  (inr `  (/) ) ) )
94 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  -.  ( F `  (inl `  n
) )  =  B )
9594iffalsed 3567 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  ( F `
 (inl `  n
) ) )
96 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  ( F `  (inl `  m )
)  =  B )
9796iftrued 3564 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  =  ( F `
 (inr `  (/) ) ) )
9895, 97eqeq12d 2208 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  <->  ( F `  (inl `  n ) )  =  ( F `  (inr `  (/) ) ) ) )
9993, 98mtbird 674 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  -.  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) ) )
10099pm2.21d 620 . . . . 5  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
101 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  -.  ( F `  (inl `  n
) )  =  B )
102101iffalsed 3567 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  ( F `
 (inl `  n
) ) )
103 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  -.  ( F `  (inl `  m
) )  =  B )
104103iffalsed 3567 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  =  ( F `
 (inl `  m
) ) )
105102, 104eqeq12d 2208 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  <->  ( F `  (inl `  n ) )  =  ( F `  (inl `  m ) ) ) )
1061ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  F :
( om 1o ) -1-1-> A
)
10738ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  (inl `  n
)  e.  ( om 1o ) )
10858ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  (inl `  m
)  e.  ( om 1o ) )
109106, 107, 108, 44syl12anc 1247 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  ( ( F `  (inl `  n
) )  =  ( F `  (inl `  m ) )  -> 
(inl `  n )  =  (inl `  m )
) )
110105, 109sylbid 150 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  (inl `  n
)  =  (inl `  m ) ) )
11147ad3antlr 493 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  ( (inl `  n )  =  (inl
`  m )  <->  n  =  m ) )
112110, 111sylibd 149 . . . . 5  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
11380adantr 276 . . . . 5  |-  ( ( ( ph  /\  (
n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  ->  ( ( F `  (inl `  m
) )  =  B  \/  -.  ( F `
 (inl `  m
) )  =  B ) )
114100, 112, 113mpjaodan 799 . . . 4  |-  ( ( ( ph  /\  (
n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
115 exmiddc 837 . . . . . 6  |-  (DECID  ( F `
 (inl `  n
) )  =  B  ->  ( ( F `
 (inl `  n
) )  =  B  \/  -.  ( F `
 (inl `  n
) )  =  B ) )
11631, 115syl 14 . . . . 5  |-  ( (
ph  /\  n  e.  om )  ->  ( ( F `  (inl `  n
) )  =  B  \/  -.  ( F `
 (inl `  n
) )  =  B ) )
117116adantrr 479 . . . 4  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
( ( F `  (inl `  n ) )  =  B  \/  -.  ( F `  (inl `  n ) )  =  B ) )
11882, 114, 117mpjaodan 799 . . 3  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
( if ( ( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
119118ralrimivva 2576 . 2  |-  ( ph  ->  A. n  e.  om  A. m  e.  om  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
120 difinfsnlem.g . . 3  |-  G  =  ( n  e.  om  |->  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) ) )
121 2fveq3 5559 . . . . 5  |-  ( n  =  m  ->  ( F `  (inl `  n
) )  =  ( F `  (inl `  m ) ) )
122121eqeq1d 2202 . . . 4  |-  ( n  =  m  ->  (
( F `  (inl `  n ) )  =  B  <->  ( F `  (inl `  m ) )  =  B ) )
123122, 121ifbieq2d 3581 . . 3  |-  ( n  =  m  ->  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) ) )
124120, 123f1mpt 5814 . 2  |-  ( G : om -1-1-> ( A 
\  { B }
)  <->  ( A. n  e.  om  if ( ( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  e.  ( A 
\  { B }
)  /\  A. n  e.  om  A. m  e. 
om  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) ) )
12533, 119, 124sylanbrc 417 1  |-  ( ph  ->  G : om -1-1-> ( A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472    \ cdif 3150   (/)c0 3446   ifcif 3557   {csn 3618    |-> cmpt 4090   omcom 4622   -->wf 5250   -1-1->wf1 5251   ` cfv 5254   1oc1o 6462   ⊔ cdju 7096  inlcinl 7104  inrcinr 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fv 5262  df-1st 6193  df-1o 6469  df-dju 7097  df-inl 7106  df-inr 7107
This theorem is referenced by:  difinfsn  7159
  Copyright terms: Public domain W3C validator