ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difinfsnlem Unicode version

Theorem difinfsnlem 7092
Description: Lemma for difinfsn 7093. The case where we need to swap  B and  (inr `  (/) ) in building the mapping  G. (Contributed by Jim Kingdon, 9-Aug-2023.)
Hypotheses
Ref Expression
difinfsnlem.dc  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
difinfsnlem.b  |-  ( ph  ->  B  e.  A )
difinfsnlem.f  |-  ( ph  ->  F : ( om 1o ) -1-1-> A )
difinfsnlem.fb  |-  ( ph  ->  ( F `  (inr `  (/) ) )  =/=  B
)
difinfsnlem.g  |-  G  =  ( n  e.  om  |->  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) ) )
Assertion
Ref Expression
difinfsnlem  |-  ( ph  ->  G : om -1-1-> ( A  \  { B } ) )
Distinct variable groups:    A, n, x, y    B, n, x, y   
n, F, x, y    ph, n
Allowed substitution hints:    ph( x, y)    G( x, y, n)

Proof of Theorem difinfsnlem
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 difinfsnlem.f . . . . . . . 8  |-  ( ph  ->  F : ( om 1o ) -1-1-> A )
2 f1f 5417 . . . . . . . 8  |-  ( F : ( om 1o )
-1-1-> A  ->  F :
( om 1o ) --> A )
31, 2syl 14 . . . . . . 7  |-  ( ph  ->  F : ( om 1o ) --> A )
4 0lt1o 6435 . . . . . . . 8  |-  (/)  e.  1o
5 djurcl 7045 . . . . . . . 8  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( om 1o ) )
64, 5mp1i 10 . . . . . . 7  |-  ( ph  ->  (inr `  (/) )  e.  ( om 1o ) )
73, 6ffvelcdmd 5648 . . . . . 6  |-  ( ph  ->  ( F `  (inr `  (/) ) )  e.  A
)
8 difinfsnlem.fb . . . . . . 7  |-  ( ph  ->  ( F `  (inr `  (/) ) )  =/=  B
)
9 elsni 3609 . . . . . . . 8  |-  ( ( F `  (inr `  (/) ) )  e.  { B }  ->  ( F `
 (inr `  (/) ) )  =  B )
109necon3ai 2396 . . . . . . 7  |-  ( ( F `  (inr `  (/) ) )  =/=  B  ->  -.  ( F `  (inr `  (/) ) )  e. 
{ B } )
118, 10syl 14 . . . . . 6  |-  ( ph  ->  -.  ( F `  (inr `  (/) ) )  e. 
{ B } )
127, 11eldifd 3139 . . . . 5  |-  ( ph  ->  ( F `  (inr `  (/) ) )  e.  ( A  \  { B } ) )
1312ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  (inl `  n
) )  =  B )  ->  ( F `  (inr `  (/) ) )  e.  ( A  \  { B } ) )
143adantr 276 . . . . . . 7  |-  ( (
ph  /\  n  e.  om )  ->  F :
( om 1o ) --> A )
15 djulcl 7044 . . . . . . . 8  |-  ( n  e.  om  ->  (inl `  n )  e.  ( om 1o ) )
1615adantl 277 . . . . . . 7  |-  ( (
ph  /\  n  e.  om )  ->  (inl `  n
)  e.  ( om 1o ) )
1714, 16ffvelcdmd 5648 . . . . . 6  |-  ( (
ph  /\  n  e.  om )  ->  ( F `  (inl `  n )
)  e.  A )
1817adantr 276 . . . . 5  |-  ( ( ( ph  /\  n  e.  om )  /\  -.  ( F `  (inl `  n ) )  =  B )  ->  ( F `  (inl `  n
) )  e.  A
)
19 elsni 3609 . . . . . . 7  |-  ( ( F `  (inl `  n ) )  e. 
{ B }  ->  ( F `  (inl `  n ) )  =  B )
2019con3i 632 . . . . . 6  |-  ( -.  ( F `  (inl `  n ) )  =  B  ->  -.  ( F `  (inl `  n
) )  e.  { B } )
2120adantl 277 . . . . 5  |-  ( ( ( ph  /\  n  e.  om )  /\  -.  ( F `  (inl `  n ) )  =  B )  ->  -.  ( F `  (inl `  n ) )  e. 
{ B } )
2218, 21eldifd 3139 . . . 4  |-  ( ( ( ph  /\  n  e.  om )  /\  -.  ( F `  (inl `  n ) )  =  B )  ->  ( F `  (inl `  n
) )  e.  ( A  \  { B } ) )
23 difinfsnlem.dc . . . . . 6  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2423adantr 276 . . . . 5  |-  ( (
ph  /\  n  e.  om )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
25 difinfsnlem.b . . . . . . 7  |-  ( ph  ->  B  e.  A )
2625adantr 276 . . . . . 6  |-  ( (
ph  /\  n  e.  om )  ->  B  e.  A )
27 eqeq12 2190 . . . . . . . 8  |-  ( ( x  =  ( F `
 (inl `  n
) )  /\  y  =  B )  ->  (
x  =  y  <->  ( F `  (inl `  n )
)  =  B ) )
2827dcbid 838 . . . . . . 7  |-  ( ( x  =  ( F `
 (inl `  n
) )  /\  y  =  B )  ->  (DECID  x  =  y  <-> DECID  ( F `  (inl `  n ) )  =  B ) )
2928rspc2gv 2853 . . . . . 6  |-  ( ( ( F `  (inl `  n ) )  e.  A  /\  B  e.  A )  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID  ( F `  (inl `  n ) )  =  B ) )
3017, 26, 29syl2anc 411 . . . . 5  |-  ( (
ph  /\  n  e.  om )  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID 
( F `  (inl `  n ) )  =  B ) )
3124, 30mpd 13 . . . 4  |-  ( (
ph  /\  n  e.  om )  -> DECID  ( F `  (inl `  n ) )  =  B )
3213, 22, 31ifcldadc 3563 . . 3  |-  ( (
ph  /\  n  e.  om )  ->  if (
( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  e.  ( A 
\  { B }
) )
3332ralrimiva 2550 . 2  |-  ( ph  ->  A. n  e.  om  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  e.  ( A  \  { B } ) )
34 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( F `  (inl `  n ) )  =  B )
35 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( F `  (inl `  m ) )  =  B )
3634, 35eqtr4d 2213 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( F `  (inl `  n ) )  =  ( F `  (inl `  m ) ) )
371ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  ->  F : ( om 1o )
-1-1-> A )
3815ad2antrl 490 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
(inl `  n )  e.  ( om 1o ) )
3938ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
(inl `  n )  e.  ( om 1o ) )
40 simprr 531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  ->  m  e.  om )
4140ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  ->  m  e.  om )
42 djulcl 7044 . . . . . . . . . 10  |-  ( m  e.  om  ->  (inl `  m )  e.  ( om 1o ) )
4341, 42syl 14 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
(inl `  m )  e.  ( om 1o ) )
44 f1veqaeq 5764 . . . . . . . . 9  |-  ( ( F : ( om 1o ) -1-1-> A  /\  (
(inl `  n )  e.  ( om 1o )  /\  (inl `  m )  e.  ( om 1o ) ) )  ->  ( ( F `  (inl `  n
) )  =  ( F `  (inl `  m ) )  -> 
(inl `  n )  =  (inl `  m )
) )
4537, 39, 43, 44syl12anc 1236 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( ( F `  (inl `  n ) )  =  ( F `  (inl `  m ) )  ->  (inl `  n
)  =  (inl `  m ) ) )
4636, 45mpd 13 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
(inl `  n )  =  (inl `  m )
)
47 inl11 7058 . . . . . . . 8  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( (inl `  n
)  =  (inl `  m )  <->  n  =  m ) )
4847ad3antlr 493 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( (inl `  n
)  =  (inl `  m )  <->  n  =  m ) )
4946, 48mpbid 147 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  ->  n  =  m )
5049a1d 22 . . . . 5  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  ( F `  (inl `  m ) )  =  B )  -> 
( if ( ( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
5140ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  m  e.  om )
52 djune 7071 . . . . . . . . . . 11  |-  ( ( m  e.  om  /\  (/) 
e.  1o )  -> 
(inl `  m )  =/=  (inr `  (/) ) )
5352necomd 2433 . . . . . . . . . 10  |-  ( ( m  e.  om  /\  (/) 
e.  1o )  -> 
(inr `  (/) )  =/=  (inl `  m )
)
5451, 4, 53sylancl 413 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  (inr `  (/) )  =/=  (inl `  m )
)
5554neneqd 2368 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  -.  (inr `  (/) )  =  (inl `  m ) )
561ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  F :
( om 1o ) -1-1-> A
)
574, 5mp1i 10 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  (inr `  (/) )  e.  ( om 1o ) )
5840, 42syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
(inl `  m )  e.  ( om 1o ) )
5958ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  (inl `  m
)  e.  ( om 1o ) )
60 f1veqaeq 5764 . . . . . . . . 9  |-  ( ( F : ( om 1o ) -1-1-> A  /\  (
(inr `  (/) )  e.  ( om 1o )  /\  (inl `  m )  e.  ( om 1o ) ) )  ->  ( ( F `  (inr `  (/) ) )  =  ( F `  (inl `  m ) )  ->  (inr `  (/) )  =  (inl `  m )
) )
6156, 57, 59, 60syl12anc 1236 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  ( ( F `  (inr `  (/) ) )  =  ( F `  (inl `  m ) )  ->  (inr `  (/) )  =  (inl `  m )
) )
6255, 61mtod 663 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  -.  ( F `  (inr `  (/) ) )  =  ( F `  (inl `  m ) ) )
63 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  ( F `  (inl `  n )
)  =  B )
6463iftrued 3541 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  ( F `
 (inr `  (/) ) ) )
65 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  -.  ( F `  (inl `  m
) )  =  B )
6665iffalsed 3544 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  =  ( F `
 (inl `  m
) ) )
6764, 66eqeq12d 2192 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  <->  ( F `  (inr `  (/) ) )  =  ( F `  (inl `  m ) ) ) )
6862, 67mtbird 673 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  -.  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) ) )
6968pm2.21d 619 . . . . 5  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  /\  -.  ( F `
 (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
7023adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
713adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  ->  F : ( om 1o ) --> A )
7271, 58ffvelcdmd 5648 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
( F `  (inl `  m ) )  e.  A )
7325adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  ->  B  e.  A )
74 eqeq12 2190 . . . . . . . . . . 11  |-  ( ( x  =  ( F `
 (inl `  m
) )  /\  y  =  B )  ->  (
x  =  y  <->  ( F `  (inl `  m )
)  =  B ) )
7574dcbid 838 . . . . . . . . . 10  |-  ( ( x  =  ( F `
 (inl `  m
) )  /\  y  =  B )  ->  (DECID  x  =  y  <-> DECID  ( F `  (inl `  m ) )  =  B ) )
7675rspc2gv 2853 . . . . . . . . 9  |-  ( ( ( F `  (inl `  m ) )  e.  A  /\  B  e.  A )  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID  ( F `  (inl `  m ) )  =  B ) )
7772, 73, 76syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID  ( F `  (inl `  m
) )  =  B ) )
7870, 77mpd 13 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> DECID  ( F `  (inl `  m
) )  =  B )
79 exmiddc 836 . . . . . . 7  |-  (DECID  ( F `
 (inl `  m
) )  =  B  ->  ( ( F `
 (inl `  m
) )  =  B  \/  -.  ( F `
 (inl `  m
) )  =  B ) )
8078, 79syl 14 . . . . . 6  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
( ( F `  (inl `  m ) )  =  B  \/  -.  ( F `  (inl `  m ) )  =  B ) )
8180adantr 276 . . . . 5  |-  ( ( ( ph  /\  (
n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  ->  ( ( F `
 (inl `  m
) )  =  B  \/  -.  ( F `
 (inl `  m
) )  =  B ) )
8250, 69, 81mpjaodan 798 . . . 4  |-  ( ( ( ph  /\  (
n  e.  om  /\  m  e.  om )
)  /\  ( F `  (inl `  n )
)  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
83 simprl 529 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  ->  n  e.  om )
8483ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  n  e.  om )
85 djune 7071 . . . . . . . . . 10  |-  ( ( n  e.  om  /\  (/) 
e.  1o )  -> 
(inl `  n )  =/=  (inr `  (/) ) )
8684, 4, 85sylancl 413 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  (inl `  n
)  =/=  (inr `  (/) ) )
8786neneqd 2368 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  -.  (inl `  n )  =  (inr
`  (/) ) )
881ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  F :
( om 1o ) -1-1-> A
)
8938ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  (inl `  n
)  e.  ( om 1o ) )
904, 5mp1i 10 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  (inr `  (/) )  e.  ( om 1o ) )
91 f1veqaeq 5764 . . . . . . . . 9  |-  ( ( F : ( om 1o ) -1-1-> A  /\  (
(inl `  n )  e.  ( om 1o )  /\  (inr `  (/) )  e.  ( om 1o ) ) )  ->  ( ( F `
 (inl `  n
) )  =  ( F `  (inr `  (/) ) )  ->  (inl `  n )  =  (inr
`  (/) ) ) )
9288, 89, 90, 91syl12anc 1236 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  ( ( F `  (inl `  n
) )  =  ( F `  (inr `  (/) ) )  ->  (inl `  n )  =  (inr
`  (/) ) ) )
9387, 92mtod 663 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  -.  ( F `  (inl `  n
) )  =  ( F `  (inr `  (/) ) ) )
94 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  -.  ( F `  (inl `  n
) )  =  B )
9594iffalsed 3544 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  ( F `
 (inl `  n
) ) )
96 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  ( F `  (inl `  m )
)  =  B )
9796iftrued 3541 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  =  ( F `
 (inr `  (/) ) ) )
9895, 97eqeq12d 2192 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  <->  ( F `  (inl `  n ) )  =  ( F `  (inr `  (/) ) ) ) )
9993, 98mtbird 673 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  -.  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) ) )
10099pm2.21d 619 . . . . 5  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  ( F `
 (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
101 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  -.  ( F `  (inl `  n
) )  =  B )
102101iffalsed 3544 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  ( F `
 (inl `  n
) ) )
103 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  -.  ( F `  (inl `  m
) )  =  B )
104103iffalsed 3544 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  if (
( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  =  ( F `
 (inl `  m
) ) )
105102, 104eqeq12d 2192 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  <->  ( F `  (inl `  n ) )  =  ( F `  (inl `  m ) ) ) )
1061ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  F :
( om 1o ) -1-1-> A
)
10738ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  (inl `  n
)  e.  ( om 1o ) )
10858ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  (inl `  m
)  e.  ( om 1o ) )
109106, 107, 108, 44syl12anc 1236 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  ( ( F `  (inl `  n
) )  =  ( F `  (inl `  m ) )  -> 
(inl `  n )  =  (inl `  m )
) )
110105, 109sylbid 150 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  (inl `  n
)  =  (inl `  m ) ) )
11147ad3antlr 493 . . . . . 6  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  ( (inl `  n )  =  (inl
`  m )  <->  n  =  m ) )
112110, 111sylibd 149 . . . . 5  |-  ( ( ( ( ph  /\  ( n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  /\  -.  ( F `  (inl `  m
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
11380adantr 276 . . . . 5  |-  ( ( ( ph  /\  (
n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  ->  ( ( F `  (inl `  m
) )  =  B  \/  -.  ( F `
 (inl `  m
) )  =  B ) )
114100, 112, 113mpjaodan 798 . . . 4  |-  ( ( ( ph  /\  (
n  e.  om  /\  m  e.  om )
)  /\  -.  ( F `  (inl `  n
) )  =  B )  ->  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
115 exmiddc 836 . . . . . 6  |-  (DECID  ( F `
 (inl `  n
) )  =  B  ->  ( ( F `
 (inl `  n
) )  =  B  \/  -.  ( F `
 (inl `  n
) )  =  B ) )
11631, 115syl 14 . . . . 5  |-  ( (
ph  /\  n  e.  om )  ->  ( ( F `  (inl `  n
) )  =  B  \/  -.  ( F `
 (inl `  n
) )  =  B ) )
117116adantrr 479 . . . 4  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
( ( F `  (inl `  n ) )  =  B  \/  -.  ( F `  (inl `  n ) )  =  B ) )
11882, 114, 117mpjaodan 798 . . 3  |-  ( (
ph  /\  ( n  e.  om  /\  m  e. 
om ) )  -> 
( if ( ( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
119118ralrimivva 2559 . 2  |-  ( ph  ->  A. n  e.  om  A. m  e.  om  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) )
120 difinfsnlem.g . . 3  |-  G  =  ( n  e.  om  |->  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) ) )
121 2fveq3 5516 . . . . 5  |-  ( n  =  m  ->  ( F `  (inl `  n
) )  =  ( F `  (inl `  m ) ) )
122121eqeq1d 2186 . . . 4  |-  ( n  =  m  ->  (
( F `  (inl `  n ) )  =  B  <->  ( F `  (inl `  m ) )  =  B ) )
123122, 121ifbieq2d 3558 . . 3  |-  ( n  =  m  ->  if ( ( F `  (inl `  n ) )  =  B ,  ( F `  (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) ) )
124120, 123f1mpt 5766 . 2  |-  ( G : om -1-1-> ( A 
\  { B }
)  <->  ( A. n  e.  om  if ( ( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  e.  ( A 
\  { B }
)  /\  A. n  e.  om  A. m  e. 
om  ( if ( ( F `  (inl `  n ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  n ) ) )  =  if ( ( F `  (inl `  m ) )  =  B ,  ( F `
 (inr `  (/) ) ) ,  ( F `  (inl `  m ) ) )  ->  n  =  m ) ) )
12533, 119, 124sylanbrc 417 1  |-  ( ph  ->  G : om -1-1-> ( A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455    \ cdif 3126   (/)c0 3422   ifcif 3534   {csn 3591    |-> cmpt 4061   omcom 4586   -->wf 5208   -1-1->wf1 5209   ` cfv 5212   1oc1o 6404   ⊔ cdju 7030  inlcinl 7038  inrcinr 7039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fv 5220  df-1st 6135  df-1o 6411  df-dju 7031  df-inl 7040  df-inr 7041
This theorem is referenced by:  difinfsn  7093
  Copyright terms: Public domain W3C validator