ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn1 Unicode version

Theorem bcn1 10397
Description: Binomial coefficient:  N choose  1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
Assertion
Ref Expression
bcn1  |-  ( N  e.  NN0  ->  ( N  _C  1 )  =  N )

Proof of Theorem bcn1
StepHypRef Expression
1 elnn0 8883 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 1eluzge0 9271 . . . . . . 7  |-  1  e.  ( ZZ>= `  0 )
32a1i 9 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  ( ZZ>= `  0 )
)
4 elnnuz 9264 . . . . . . 7  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
54biimpi 119 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
6 elfzuzb 9693 . . . . . 6  |-  ( 1  e.  ( 0 ... N )  <->  ( 1  e.  ( ZZ>= `  0
)  /\  N  e.  ( ZZ>= `  1 )
) )
73, 5, 6sylanbrc 411 . . . . 5  |-  ( N  e.  NN  ->  1  e.  ( 0 ... N
) )
8 bcval2 10389 . . . . 5  |-  ( 1  e.  ( 0 ... N )  ->  ( N  _C  1 )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  1 ) )  x.  ( ! `
 1 ) ) ) )
97, 8syl 14 . . . 4  |-  ( N  e.  NN  ->  ( N  _C  1 )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  1 ) )  x.  ( ! `
 1 ) ) ) )
10 facnn2 10373 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  =  ( ( ! `
 ( N  - 
1 ) )  x.  N ) )
11 fac1 10368 . . . . . . 7  |-  ( ! `
 1 )  =  1
1211oveq2i 5739 . . . . . 6  |-  ( ( ! `  ( N  -  1 ) )  x.  ( ! ` 
1 ) )  =  ( ( ! `  ( N  -  1
) )  x.  1 )
13 nnm1nn0 8922 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
1413faccld 10375 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  ( N  -  1 ) )  e.  NN )
1514nncnd 8644 . . . . . . 7  |-  ( N  e.  NN  ->  ( ! `  ( N  -  1 ) )  e.  CC )
1615mulid1d 7707 . . . . . 6  |-  ( N  e.  NN  ->  (
( ! `  ( N  -  1 ) )  x.  1 )  =  ( ! `  ( N  -  1
) ) )
1712, 16syl5eq 2159 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  ( N  -  1 ) )  x.  ( ! `
 1 ) )  =  ( ! `  ( N  -  1
) ) )
1810, 17oveq12d 5746 . . . 4  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  1 ) )  x.  ( ! ` 
1 ) ) )  =  ( ( ( ! `  ( N  -  1 ) )  x.  N )  / 
( ! `  ( N  -  1 ) ) ) )
19 nncn 8638 . . . . 5  |-  ( N  e.  NN  ->  N  e.  CC )
2014nnap0d 8676 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  ( N  -  1 ) ) #  0 )
2119, 15, 20divcanap3d 8468 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  ( N  -  1
) )  x.  N
)  /  ( ! `
 ( N  - 
1 ) ) )  =  N )
229, 18, 213eqtrd 2151 . . 3  |-  ( N  e.  NN  ->  ( N  _C  1 )  =  N )
23 0nn0 8896 . . . . 5  |-  0  e.  NN0
24 1z 8984 . . . . 5  |-  1  e.  ZZ
25 0lt1 7812 . . . . . 6  |-  0  <  1
2625olci 704 . . . . 5  |-  ( 1  <  0  \/  0  <  1 )
27 bcval4 10391 . . . . 5  |-  ( ( 0  e.  NN0  /\  1  e.  ZZ  /\  (
1  <  0  \/  0  <  1 ) )  ->  ( 0  _C  1 )  =  0 )
2823, 24, 26, 27mp3an 1298 . . . 4  |-  ( 0  _C  1 )  =  0
29 oveq1 5735 . . . . 5  |-  ( N  =  0  ->  ( N  _C  1 )  =  ( 0  _C  1
) )
30 eqeq12 2127 . . . . 5  |-  ( ( ( N  _C  1
)  =  ( 0  _C  1 )  /\  N  =  0 )  ->  ( ( N  _C  1 )  =  N  <->  ( 0  _C  1 )  =  0 ) )
3129, 30mpancom 416 . . . 4  |-  ( N  =  0  ->  (
( N  _C  1
)  =  N  <->  ( 0  _C  1 )  =  0 ) )
3228, 31mpbiri 167 . . 3  |-  ( N  =  0  ->  ( N  _C  1 )  =  N )
3322, 32jaoi 688 . 2  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( N  _C  1 )  =  N )
341, 33sylbi 120 1  |-  ( N  e.  NN0  ->  ( N  _C  1 )  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 680    = wceq 1314    e. wcel 1463   class class class wbr 3895   ` cfv 5081  (class class class)co 5728   0cc0 7547   1c1 7548    x. cmul 7552    < clt 7724    - cmin 7856    / cdiv 8345   NNcn 8630   NN0cn0 8881   ZZcz 8958   ZZ>=cuz 9228   ...cfz 9683   !cfa 10364    _C cbc 10386
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-frec 6242  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-fz 9684  df-seqfrec 10112  df-fac 10365  df-bc 10387
This theorem is referenced by:  bcnp1n  10398  bcn2m1  10408  bcn2p1  10409  bcnm1  10411
  Copyright terms: Public domain W3C validator