ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn1 Unicode version

Theorem bcn1 10832
Description: Binomial coefficient:  N choose  1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
Assertion
Ref Expression
bcn1  |-  ( N  e.  NN0  ->  ( N  _C  1 )  =  N )

Proof of Theorem bcn1
StepHypRef Expression
1 elnn0 9245 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 1eluzge0 9642 . . . . . . 7  |-  1  e.  ( ZZ>= `  0 )
32a1i 9 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  ( ZZ>= `  0 )
)
4 elnnuz 9632 . . . . . . 7  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
54biimpi 120 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
6 elfzuzb 10088 . . . . . 6  |-  ( 1  e.  ( 0 ... N )  <->  ( 1  e.  ( ZZ>= `  0
)  /\  N  e.  ( ZZ>= `  1 )
) )
73, 5, 6sylanbrc 417 . . . . 5  |-  ( N  e.  NN  ->  1  e.  ( 0 ... N
) )
8 bcval2 10824 . . . . 5  |-  ( 1  e.  ( 0 ... N )  ->  ( N  _C  1 )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  1 ) )  x.  ( ! `
 1 ) ) ) )
97, 8syl 14 . . . 4  |-  ( N  e.  NN  ->  ( N  _C  1 )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  1 ) )  x.  ( ! `
 1 ) ) ) )
10 facnn2 10808 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  =  ( ( ! `
 ( N  - 
1 ) )  x.  N ) )
11 fac1 10803 . . . . . . 7  |-  ( ! `
 1 )  =  1
1211oveq2i 5930 . . . . . 6  |-  ( ( ! `  ( N  -  1 ) )  x.  ( ! ` 
1 ) )  =  ( ( ! `  ( N  -  1
) )  x.  1 )
13 nnm1nn0 9284 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
1413faccld 10810 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  ( N  -  1 ) )  e.  NN )
1514nncnd 8998 . . . . . . 7  |-  ( N  e.  NN  ->  ( ! `  ( N  -  1 ) )  e.  CC )
1615mulridd 8038 . . . . . 6  |-  ( N  e.  NN  ->  (
( ! `  ( N  -  1 ) )  x.  1 )  =  ( ! `  ( N  -  1
) ) )
1712, 16eqtrid 2238 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  ( N  -  1 ) )  x.  ( ! `
 1 ) )  =  ( ! `  ( N  -  1
) ) )
1810, 17oveq12d 5937 . . . 4  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  1 ) )  x.  ( ! ` 
1 ) ) )  =  ( ( ( ! `  ( N  -  1 ) )  x.  N )  / 
( ! `  ( N  -  1 ) ) ) )
19 nncn 8992 . . . . 5  |-  ( N  e.  NN  ->  N  e.  CC )
2014nnap0d 9030 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  ( N  -  1 ) ) #  0 )
2119, 15, 20divcanap3d 8816 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  ( N  -  1
) )  x.  N
)  /  ( ! `
 ( N  - 
1 ) ) )  =  N )
229, 18, 213eqtrd 2230 . . 3  |-  ( N  e.  NN  ->  ( N  _C  1 )  =  N )
23 0nn0 9258 . . . . 5  |-  0  e.  NN0
24 1z 9346 . . . . 5  |-  1  e.  ZZ
25 0lt1 8148 . . . . . 6  |-  0  <  1
2625olci 733 . . . . 5  |-  ( 1  <  0  \/  0  <  1 )
27 bcval4 10826 . . . . 5  |-  ( ( 0  e.  NN0  /\  1  e.  ZZ  /\  (
1  <  0  \/  0  <  1 ) )  ->  ( 0  _C  1 )  =  0 )
2823, 24, 26, 27mp3an 1348 . . . 4  |-  ( 0  _C  1 )  =  0
29 oveq1 5926 . . . . 5  |-  ( N  =  0  ->  ( N  _C  1 )  =  ( 0  _C  1
) )
30 eqeq12 2206 . . . . 5  |-  ( ( ( N  _C  1
)  =  ( 0  _C  1 )  /\  N  =  0 )  ->  ( ( N  _C  1 )  =  N  <->  ( 0  _C  1 )  =  0 ) )
3129, 30mpancom 422 . . . 4  |-  ( N  =  0  ->  (
( N  _C  1
)  =  N  <->  ( 0  _C  1 )  =  0 ) )
3228, 31mpbiri 168 . . 3  |-  ( N  =  0  ->  ( N  _C  1 )  =  N )
3322, 32jaoi 717 . 2  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( N  _C  1 )  =  N )
341, 33sylbi 121 1  |-  ( N  e.  NN0  ->  ( N  _C  1 )  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   0cc0 7874   1c1 7875    x. cmul 7879    < clt 8056    - cmin 8192    / cdiv 8693   NNcn 8984   NN0cn0 9243   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077   !cfa 10799    _C cbc 10821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-fz 10078  df-seqfrec 10522  df-fac 10800  df-bc 10822
This theorem is referenced by:  bcnp1n  10833  bcn2m1  10843  bcn2p1  10844  bcnm1  10846
  Copyright terms: Public domain W3C validator