ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difinfsn Unicode version

Theorem difinfsn 7065
Description: An infinite set minus one element is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
Assertion
Ref Expression
difinfsn  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  om  ~<_  ( A  \  { B } ) )
Distinct variable groups:    x, A, y   
x, B, y

Proof of Theorem difinfsn
Dummy variables  a  f  g  n  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omp1eom 7060 . . . . 5  |-  ( om 1o )  ~~  om
2 simp2 988 . . . . 5  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  om  ~<_  A )
3 endomtr 6756 . . . . 5  |-  ( ( ( om 1o )  ~~  om 
/\  om  ~<_  A )  ->  ( om 1o )  ~<_  A )
41, 2, 3sylancr 411 . . . 4  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  ( om 1o )  ~<_  A )
5 brdomi 6715 . . . 4  |-  ( ( om 1o )  ~<_  A  ->  E. f  f :
( om 1o ) -1-1-> A
)
64, 5syl 14 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  E. f  f : ( om 1o ) -1-1-> A
)
7 inlresf1 7026 . . . . . . . 8  |-  (inl  |`  om ) : om -1-1-> ( om 1o )
8 f1co 5405 . . . . . . . 8  |-  ( ( f : ( om 1o ) -1-1-> A  /\  (inl  |` 
om ) : om -1-1-> ( om 1o ) )  -> 
( f  o.  (inl  |` 
om ) ) : om -1-1-> A )
97, 8mpan2 422 . . . . . . 7  |-  ( f : ( om 1o )
-1-1-> A  ->  ( f  o.  (inl  |`  om ) ) : om -1-1-> A )
109ad2antlr 481 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( f  o.  (inl  |` 
om ) ) : om -1-1-> A )
11 f1f 5393 . . . . . . . . . . . 12  |-  ( ( f  o.  (inl  |`  om )
) : om -1-1-> A  ->  ( f  o.  (inl  |` 
om ) ) : om --> A )
1210, 11syl 14 . . . . . . . . . . 11  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( f  o.  (inl  |` 
om ) ) : om --> A )
1312frnd 5347 . . . . . . . . . 10  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  ->  ran  ( f  o.  (inl  |` 
om ) )  C_  A )
1413sselda 3142 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  s  e. 
ran  ( f  o.  (inl  |`  om ) ) )  ->  s  e.  A )
15 simpllr 524 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  ( f `  (inr `  (/) ) )  =  B )
16 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  ( (
f  o.  (inl  |`  om )
) `  n )  =  B )
17 f1f 5393 . . . . . . . . . . . . . . . . . . . 20  |-  ( (inl  |`  om ) : om -1-1-> ( om 1o )  ->  (inl  |` 
om ) : om --> ( om 1o ) )
187, 17ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  (inl  |`  om ) : om --> ( om 1o )
19 simpr 109 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  n  e.  om )
20 fvco3 5557 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (inl  |`  om ) : om --> ( om 1o )  /\  n  e.  om )  ->  ( ( f  o.  (inl  |`  om )
) `  n )  =  ( f `  ( (inl  |`  om ) `  n ) ) )
2118, 19, 20sylancr 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  (
( f  o.  (inl  |` 
om ) ) `  n )  =  ( f `  ( (inl  |`  om ) `  n
) ) )
2219fvresd 5511 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  (
(inl  |`  om ) `  n )  =  (inl
`  n ) )
2322fveq2d 5490 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  (
f `  ( (inl  |` 
om ) `  n
) )  =  ( f `  (inl `  n ) ) )
2421, 23eqtrd 2198 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  (
( f  o.  (inl  |` 
om ) ) `  n )  =  ( f `  (inl `  n ) ) )
2524adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  ( (
f  o.  (inl  |`  om )
) `  n )  =  ( f `  (inl `  n ) ) )
2615, 16, 253eqtr2rd 2205 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  ( f `  (inl `  n )
)  =  ( f `
 (inr `  (/) ) ) )
27 simp-4r 532 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  f :
( om 1o ) -1-1-> A
)
28 djulcl 7016 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  om  ->  (inl `  n )  e.  ( om 1o ) )
2928ad2antlr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  (inl `  n
)  e.  ( om 1o ) )
30 0lt1o 6408 . . . . . . . . . . . . . . . . . 18  |-  (/)  e.  1o
31 djurcl 7017 . . . . . . . . . . . . . . . . . 18  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( om 1o ) )
3230, 31ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  (inr `  (/) )  e.  ( om 1o )
3332a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  (inr `  (/) )  e.  ( om 1o ) )
34 f1veqaeq 5737 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( om 1o ) -1-1-> A  /\  (
(inl `  n )  e.  ( om 1o )  /\  (inr `  (/) )  e.  ( om 1o ) ) )  ->  ( ( f `
 (inl `  n
) )  =  ( f `  (inr `  (/) ) )  ->  (inl `  n )  =  (inr
`  (/) ) ) )
3527, 29, 33, 34syl12anc 1226 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  ( (
f `  (inl `  n
) )  =  ( f `  (inr `  (/) ) )  ->  (inl `  n )  =  (inr
`  (/) ) ) )
3626, 35mpd 13 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  (inl `  n
)  =  (inr `  (/) ) )
3719adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  n  e.  om )
38 djune 7043 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  om  /\  (/) 
e.  1o )  -> 
(inl `  n )  =/=  (inr `  (/) ) )
3937, 30, 38sylancl 410 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  (inl `  n
)  =/=  (inr `  (/) ) )
4039neneqd 2357 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  -.  (inl `  n )  =  (inr
`  (/) ) )
4136, 40pm2.65da 651 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  -.  ( ( f  o.  (inl  |`  om ) ) `
 n )  =  B )
4241ralrimiva 2539 . . . . . . . . . . . 12  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  ->  A. n  e.  om  -.  ( ( f  o.  (inl  |`  om ) ) `
 n )  =  B )
4312ffnd 5338 . . . . . . . . . . . . 13  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( f  o.  (inl  |` 
om ) )  Fn 
om )
44 eqeq1 2172 . . . . . . . . . . . . . . 15  |-  ( s  =  ( ( f  o.  (inl  |`  om )
) `  n )  ->  ( s  =  B  <-> 
( ( f  o.  (inl  |`  om ) ) `
 n )  =  B ) )
4544notbid 657 . . . . . . . . . . . . . 14  |-  ( s  =  ( ( f  o.  (inl  |`  om )
) `  n )  ->  ( -.  s  =  B  <->  -.  ( (
f  o.  (inl  |`  om )
) `  n )  =  B ) )
4645ralrn 5623 . . . . . . . . . . . . 13  |-  ( ( f  o.  (inl  |`  om )
)  Fn  om  ->  ( A. s  e.  ran  ( f  o.  (inl  |` 
om ) )  -.  s  =  B  <->  A. n  e.  om  -.  ( ( f  o.  (inl  |`  om )
) `  n )  =  B ) )
4743, 46syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( A. s  e. 
ran  ( f  o.  (inl  |`  om ) )  -.  s  =  B  <->  A. n  e.  om  -.  ( ( f  o.  (inl  |`  om ) ) `
 n )  =  B ) )
4842, 47mpbird 166 . . . . . . . . . . 11  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  ->  A. s  e.  ran  ( f  o.  (inl  |` 
om ) )  -.  s  =  B )
4948r19.21bi 2554 . . . . . . . . . 10  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  s  e. 
ran  ( f  o.  (inl  |`  om ) ) )  ->  -.  s  =  B )
50 velsn 3593 . . . . . . . . . 10  |-  ( s  e.  { B }  <->  s  =  B )
5149, 50sylnibr 667 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  s  e. 
ran  ( f  o.  (inl  |`  om ) ) )  ->  -.  s  e.  { B } )
5214, 51eldifd 3126 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  s  e. 
ran  ( f  o.  (inl  |`  om ) ) )  ->  s  e.  ( A  \  { B } ) )
5352ex 114 . . . . . . 7  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( s  e.  ran  ( f  o.  (inl  |` 
om ) )  -> 
s  e.  ( A 
\  { B }
) ) )
5453ssrdv 3148 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  ->  ran  ( f  o.  (inl  |` 
om ) )  C_  ( A  \  { B } ) )
55 f1ssr 5400 . . . . . 6  |-  ( ( ( f  o.  (inl  |` 
om ) ) : om -1-1-> A  /\  ran  (
f  o.  (inl  |`  om )
)  C_  ( A  \  { B } ) )  ->  ( f  o.  (inl  |`  om ) ) : om -1-1-> ( A 
\  { B }
) )
5610, 54, 55syl2anc 409 . . . . 5  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( f  o.  (inl  |` 
om ) ) : om -1-1-> ( A  \  { B } ) )
57 f1f 5393 . . . . . . 7  |-  ( ( f  o.  (inl  |`  om )
) : om -1-1-> ( A  \  { B } )  ->  (
f  o.  (inl  |`  om )
) : om --> ( A 
\  { B }
) )
58 omex 4570 . . . . . . 7  |-  om  e.  _V
59 fex 5714 . . . . . . 7  |-  ( ( ( f  o.  (inl  |` 
om ) ) : om --> ( A  \  { B } )  /\  om  e.  _V )  -> 
( f  o.  (inl  |` 
om ) )  e. 
_V )
6057, 58, 59sylancl 410 . . . . . 6  |-  ( ( f  o.  (inl  |`  om )
) : om -1-1-> ( A  \  { B } )  ->  (
f  o.  (inl  |`  om )
)  e.  _V )
61 f1eq1 5388 . . . . . . 7  |-  ( g  =  ( f  o.  (inl  |`  om ) )  ->  ( g : om -1-1-> ( A  \  { B } )  <->  ( f  o.  (inl  |`  om ) ) : om -1-1-> ( A 
\  { B }
) ) )
6261spcegv 2814 . . . . . 6  |-  ( ( f  o.  (inl  |`  om )
)  e.  _V  ->  ( ( f  o.  (inl  |` 
om ) ) : om -1-1-> ( A  \  { B } )  ->  E. g  g : om
-1-1-> ( A  \  { B } ) ) )
6360, 62mpcom 36 . . . . 5  |-  ( ( f  o.  (inl  |`  om )
) : om -1-1-> ( A  \  { B } )  ->  E. g 
g : om -1-1-> ( A  \  { B } ) )
6456, 63syl 14 . . . 4  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  ->  E. g  g : om
-1-1-> ( A  \  { B } ) )
65 simpl1 990 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
6665adantr 274 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
67 simpl3 992 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  B  e.  A )
6867adantr 274 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  B  e.  A )
69 simpr 109 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  f : ( om 1o )
-1-1-> A )
7069adantr 274 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  f :
( om 1o ) -1-1-> A
)
71 simpr 109 . . . . . . 7  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  -.  (
f `  (inr `  (/) ) )  =  B )
7271neqned 2343 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  ( f `  (inr `  (/) ) )  =/=  B )
73 eqid 2165 . . . . . 6  |-  ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `
 (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) )  =  ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `  (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) )
7466, 68, 70, 72, 73difinfsnlem 7064 . . . . 5  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `
 (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) ) : om -1-1-> ( A  \  { B } ) )
7558mptex 5711 . . . . . 6  |-  ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `
 (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) )  e.  _V
76 f1eq1 5388 . . . . . 6  |-  ( g  =  ( a  e. 
om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `
 (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) )  ->  (
g : om -1-1-> ( A  \  { B } )  <->  ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `
 (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) ) : om -1-1-> ( A  \  { B } ) ) )
7775, 76spcev 2821 . . . . 5  |-  ( ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `  (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) ) : om -1-1-> ( A  \  { B } )  ->  E. g 
g : om -1-1-> ( A  \  { B } ) )
7874, 77syl 14 . . . 4  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  E. g 
g : om -1-1-> ( A  \  { B } ) )
79 f1f 5393 . . . . . . . . 9  |-  ( f : ( om 1o )
-1-1-> A  ->  f :
( om 1o ) --> A )
8069, 79syl 14 . . . . . . . 8  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  f : ( om 1o ) --> A )
8132a1i 9 . . . . . . . 8  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  (inr `  (/) )  e.  ( om 1o ) )
8280, 81ffvelrnd 5621 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  (
f `  (inr `  (/) ) )  e.  A )
8382, 67jca 304 . . . . . 6  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  (
( f `  (inr `  (/) ) )  e.  A  /\  B  e.  A
) )
84 eqeq12 2178 . . . . . . . 8  |-  ( ( x  =  ( f `
 (inr `  (/) ) )  /\  y  =  B )  ->  ( x  =  y  <->  ( f `  (inr `  (/) ) )  =  B ) )
8584dcbid 828 . . . . . . 7  |-  ( ( x  =  ( f `
 (inr `  (/) ) )  /\  y  =  B )  ->  (DECID  x  =  y 
<-> DECID  ( f `  (inr `  (/) ) )  =  B ) )
8685rspc2gv 2842 . . . . . 6  |-  ( ( ( f `  (inr `  (/) ) )  e.  A  /\  B  e.  A
)  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID 
( f `  (inr `  (/) ) )  =  B ) )
8783, 65, 86sylc 62 . . . . 5  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  -> DECID  ( f `  (inr `  (/) ) )  =  B )
88 exmiddc 826 . . . . 5  |-  (DECID  ( f `
 (inr `  (/) ) )  =  B  ->  (
( f `  (inr `  (/) ) )  =  B  \/  -.  ( f `
 (inr `  (/) ) )  =  B ) )
8987, 88syl 14 . . . 4  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  (
( f `  (inr `  (/) ) )  =  B  \/  -.  ( f `
 (inr `  (/) ) )  =  B ) )
9064, 78, 89mpjaodan 788 . . 3  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  E. g 
g : om -1-1-> ( A  \  { B } ) )
916, 90exlimddv 1886 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  E. g  g : om -1-1-> ( A  \  { B } ) )
92 reldom 6711 . . . . . 6  |-  Rel  ~<_
9392brrelex2i 4648 . . . . 5  |-  ( om  ~<_  A  ->  A  e.  _V )
94 difexg 4123 . . . . 5  |-  ( A  e.  _V  ->  ( A  \  { B }
)  e.  _V )
9593, 94syl 14 . . . 4  |-  ( om  ~<_  A  ->  ( A  \  { B } )  e.  _V )
96953ad2ant2 1009 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  ( A  \  { B } )  e.  _V )
97 brdomg 6714 . . 3  |-  ( ( A  \  { B } )  e.  _V  ->  ( om  ~<_  ( A 
\  { B }
)  <->  E. g  g : om -1-1-> ( A  \  { B } ) ) )
9896, 97syl 14 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  ( om  ~<_  ( A 
\  { B }
)  <->  E. g  g : om -1-1-> ( A  \  { B } ) ) )
9991, 98mpbird 166 1  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  om  ~<_  ( A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343   E.wex 1480    e. wcel 2136    =/= wne 2336   A.wral 2444   _Vcvv 2726    \ cdif 3113    C_ wss 3116   (/)c0 3409   ifcif 3520   {csn 3576   class class class wbr 3982    |-> cmpt 4043   omcom 4567   ran crn 4605    |` cres 4606    o. ccom 4608    Fn wfn 5183   -->wf 5184   -1-1->wf1 5185   ` cfv 5188   1oc1o 6377    ~~ cen 6704    ~<_ cdom 6705   ⊔ cdju 7002  inlcinl 7010  inrcinr 7011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-er 6501  df-en 6707  df-dom 6708  df-dju 7003  df-inl 7012  df-inr 7013  df-case 7049
This theorem is referenced by:  difinfinf  7066
  Copyright terms: Public domain W3C validator