ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difinfsn Unicode version

Theorem difinfsn 7073
Description: An infinite set minus one element is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
Assertion
Ref Expression
difinfsn  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  om  ~<_  ( A  \  { B } ) )
Distinct variable groups:    x, A, y   
x, B, y

Proof of Theorem difinfsn
Dummy variables  a  f  g  n  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omp1eom 7068 . . . . 5  |-  ( om 1o )  ~~  om
2 simp2 993 . . . . 5  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  om  ~<_  A )
3 endomtr 6764 . . . . 5  |-  ( ( ( om 1o )  ~~  om 
/\  om  ~<_  A )  ->  ( om 1o )  ~<_  A )
41, 2, 3sylancr 412 . . . 4  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  ( om 1o )  ~<_  A )
5 brdomi 6723 . . . 4  |-  ( ( om 1o )  ~<_  A  ->  E. f  f :
( om 1o ) -1-1-> A
)
64, 5syl 14 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  E. f  f : ( om 1o ) -1-1-> A
)
7 inlresf1 7034 . . . . . . . 8  |-  (inl  |`  om ) : om -1-1-> ( om 1o )
8 f1co 5413 . . . . . . . 8  |-  ( ( f : ( om 1o ) -1-1-> A  /\  (inl  |` 
om ) : om -1-1-> ( om 1o ) )  -> 
( f  o.  (inl  |` 
om ) ) : om -1-1-> A )
97, 8mpan2 423 . . . . . . 7  |-  ( f : ( om 1o )
-1-1-> A  ->  ( f  o.  (inl  |`  om ) ) : om -1-1-> A )
109ad2antlr 486 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( f  o.  (inl  |` 
om ) ) : om -1-1-> A )
11 f1f 5401 . . . . . . . . . . . 12  |-  ( ( f  o.  (inl  |`  om )
) : om -1-1-> A  ->  ( f  o.  (inl  |` 
om ) ) : om --> A )
1210, 11syl 14 . . . . . . . . . . 11  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( f  o.  (inl  |` 
om ) ) : om --> A )
1312frnd 5355 . . . . . . . . . 10  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  ->  ran  ( f  o.  (inl  |` 
om ) )  C_  A )
1413sselda 3147 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  s  e. 
ran  ( f  o.  (inl  |`  om ) ) )  ->  s  e.  A )
15 simpllr 529 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  ( f `  (inr `  (/) ) )  =  B )
16 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  ( (
f  o.  (inl  |`  om )
) `  n )  =  B )
17 f1f 5401 . . . . . . . . . . . . . . . . . . . 20  |-  ( (inl  |`  om ) : om -1-1-> ( om 1o )  ->  (inl  |` 
om ) : om --> ( om 1o ) )
187, 17ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  (inl  |`  om ) : om --> ( om 1o )
19 simpr 109 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  n  e.  om )
20 fvco3 5565 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (inl  |`  om ) : om --> ( om 1o )  /\  n  e.  om )  ->  ( ( f  o.  (inl  |`  om )
) `  n )  =  ( f `  ( (inl  |`  om ) `  n ) ) )
2118, 19, 20sylancr 412 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  (
( f  o.  (inl  |` 
om ) ) `  n )  =  ( f `  ( (inl  |`  om ) `  n
) ) )
2219fvresd 5519 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  (
(inl  |`  om ) `  n )  =  (inl
`  n ) )
2322fveq2d 5498 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  (
f `  ( (inl  |` 
om ) `  n
) )  =  ( f `  (inl `  n ) ) )
2421, 23eqtrd 2203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  (
( f  o.  (inl  |` 
om ) ) `  n )  =  ( f `  (inl `  n ) ) )
2524adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  ( (
f  o.  (inl  |`  om )
) `  n )  =  ( f `  (inl `  n ) ) )
2615, 16, 253eqtr2rd 2210 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  ( f `  (inl `  n )
)  =  ( f `
 (inr `  (/) ) ) )
27 simp-4r 537 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  f :
( om 1o ) -1-1-> A
)
28 djulcl 7024 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  om  ->  (inl `  n )  e.  ( om 1o ) )
2928ad2antlr 486 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  (inl `  n
)  e.  ( om 1o ) )
30 0lt1o 6416 . . . . . . . . . . . . . . . . . 18  |-  (/)  e.  1o
31 djurcl 7025 . . . . . . . . . . . . . . . . . 18  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( om 1o ) )
3230, 31ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  (inr `  (/) )  e.  ( om 1o )
3332a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  (inr `  (/) )  e.  ( om 1o ) )
34 f1veqaeq 5745 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( om 1o ) -1-1-> A  /\  (
(inl `  n )  e.  ( om 1o )  /\  (inr `  (/) )  e.  ( om 1o ) ) )  ->  ( ( f `
 (inl `  n
) )  =  ( f `  (inr `  (/) ) )  ->  (inl `  n )  =  (inr
`  (/) ) ) )
3527, 29, 33, 34syl12anc 1231 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  ( (
f `  (inl `  n
) )  =  ( f `  (inr `  (/) ) )  ->  (inl `  n )  =  (inr
`  (/) ) ) )
3626, 35mpd 13 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  (inl `  n
)  =  (inr `  (/) ) )
3719adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  n  e.  om )
38 djune 7051 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  om  /\  (/) 
e.  1o )  -> 
(inl `  n )  =/=  (inr `  (/) ) )
3937, 30, 38sylancl 411 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  (inl `  n
)  =/=  (inr `  (/) ) )
4039neneqd 2361 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  -.  (inl `  n )  =  (inr
`  (/) ) )
4136, 40pm2.65da 656 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  -.  ( ( f  o.  (inl  |`  om ) ) `
 n )  =  B )
4241ralrimiva 2543 . . . . . . . . . . . 12  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  ->  A. n  e.  om  -.  ( ( f  o.  (inl  |`  om ) ) `
 n )  =  B )
4312ffnd 5346 . . . . . . . . . . . . 13  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( f  o.  (inl  |` 
om ) )  Fn 
om )
44 eqeq1 2177 . . . . . . . . . . . . . . 15  |-  ( s  =  ( ( f  o.  (inl  |`  om )
) `  n )  ->  ( s  =  B  <-> 
( ( f  o.  (inl  |`  om ) ) `
 n )  =  B ) )
4544notbid 662 . . . . . . . . . . . . . 14  |-  ( s  =  ( ( f  o.  (inl  |`  om )
) `  n )  ->  ( -.  s  =  B  <->  -.  ( (
f  o.  (inl  |`  om )
) `  n )  =  B ) )
4645ralrn 5631 . . . . . . . . . . . . 13  |-  ( ( f  o.  (inl  |`  om )
)  Fn  om  ->  ( A. s  e.  ran  ( f  o.  (inl  |` 
om ) )  -.  s  =  B  <->  A. n  e.  om  -.  ( ( f  o.  (inl  |`  om )
) `  n )  =  B ) )
4743, 46syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( A. s  e. 
ran  ( f  o.  (inl  |`  om ) )  -.  s  =  B  <->  A. n  e.  om  -.  ( ( f  o.  (inl  |`  om ) ) `
 n )  =  B ) )
4842, 47mpbird 166 . . . . . . . . . . 11  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  ->  A. s  e.  ran  ( f  o.  (inl  |` 
om ) )  -.  s  =  B )
4948r19.21bi 2558 . . . . . . . . . 10  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  s  e. 
ran  ( f  o.  (inl  |`  om ) ) )  ->  -.  s  =  B )
50 velsn 3598 . . . . . . . . . 10  |-  ( s  e.  { B }  <->  s  =  B )
5149, 50sylnibr 672 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  s  e. 
ran  ( f  o.  (inl  |`  om ) ) )  ->  -.  s  e.  { B } )
5214, 51eldifd 3131 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  s  e. 
ran  ( f  o.  (inl  |`  om ) ) )  ->  s  e.  ( A  \  { B } ) )
5352ex 114 . . . . . . 7  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( s  e.  ran  ( f  o.  (inl  |` 
om ) )  -> 
s  e.  ( A 
\  { B }
) ) )
5453ssrdv 3153 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  ->  ran  ( f  o.  (inl  |` 
om ) )  C_  ( A  \  { B } ) )
55 f1ssr 5408 . . . . . 6  |-  ( ( ( f  o.  (inl  |` 
om ) ) : om -1-1-> A  /\  ran  (
f  o.  (inl  |`  om )
)  C_  ( A  \  { B } ) )  ->  ( f  o.  (inl  |`  om ) ) : om -1-1-> ( A 
\  { B }
) )
5610, 54, 55syl2anc 409 . . . . 5  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( f  o.  (inl  |` 
om ) ) : om -1-1-> ( A  \  { B } ) )
57 f1f 5401 . . . . . . 7  |-  ( ( f  o.  (inl  |`  om )
) : om -1-1-> ( A  \  { B } )  ->  (
f  o.  (inl  |`  om )
) : om --> ( A 
\  { B }
) )
58 omex 4575 . . . . . . 7  |-  om  e.  _V
59 fex 5722 . . . . . . 7  |-  ( ( ( f  o.  (inl  |` 
om ) ) : om --> ( A  \  { B } )  /\  om  e.  _V )  -> 
( f  o.  (inl  |` 
om ) )  e. 
_V )
6057, 58, 59sylancl 411 . . . . . 6  |-  ( ( f  o.  (inl  |`  om )
) : om -1-1-> ( A  \  { B } )  ->  (
f  o.  (inl  |`  om )
)  e.  _V )
61 f1eq1 5396 . . . . . . 7  |-  ( g  =  ( f  o.  (inl  |`  om ) )  ->  ( g : om -1-1-> ( A  \  { B } )  <->  ( f  o.  (inl  |`  om ) ) : om -1-1-> ( A 
\  { B }
) ) )
6261spcegv 2818 . . . . . 6  |-  ( ( f  o.  (inl  |`  om )
)  e.  _V  ->  ( ( f  o.  (inl  |` 
om ) ) : om -1-1-> ( A  \  { B } )  ->  E. g  g : om
-1-1-> ( A  \  { B } ) ) )
6360, 62mpcom 36 . . . . 5  |-  ( ( f  o.  (inl  |`  om )
) : om -1-1-> ( A  \  { B } )  ->  E. g 
g : om -1-1-> ( A  \  { B } ) )
6456, 63syl 14 . . . 4  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  ->  E. g  g : om
-1-1-> ( A  \  { B } ) )
65 simpl1 995 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
6665adantr 274 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
67 simpl3 997 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  B  e.  A )
6867adantr 274 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  B  e.  A )
69 simpr 109 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  f : ( om 1o )
-1-1-> A )
7069adantr 274 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  f :
( om 1o ) -1-1-> A
)
71 simpr 109 . . . . . . 7  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  -.  (
f `  (inr `  (/) ) )  =  B )
7271neqned 2347 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  ( f `  (inr `  (/) ) )  =/=  B )
73 eqid 2170 . . . . . 6  |-  ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `
 (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) )  =  ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `  (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) )
7466, 68, 70, 72, 73difinfsnlem 7072 . . . . 5  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `
 (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) ) : om -1-1-> ( A  \  { B } ) )
7558mptex 5719 . . . . . 6  |-  ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `
 (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) )  e.  _V
76 f1eq1 5396 . . . . . 6  |-  ( g  =  ( a  e. 
om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `
 (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) )  ->  (
g : om -1-1-> ( A  \  { B } )  <->  ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `
 (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) ) : om -1-1-> ( A  \  { B } ) ) )
7775, 76spcev 2825 . . . . 5  |-  ( ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `  (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) ) : om -1-1-> ( A  \  { B } )  ->  E. g 
g : om -1-1-> ( A  \  { B } ) )
7874, 77syl 14 . . . 4  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  E. g 
g : om -1-1-> ( A  \  { B } ) )
79 f1f 5401 . . . . . . . . 9  |-  ( f : ( om 1o )
-1-1-> A  ->  f :
( om 1o ) --> A )
8069, 79syl 14 . . . . . . . 8  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  f : ( om 1o ) --> A )
8132a1i 9 . . . . . . . 8  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  (inr `  (/) )  e.  ( om 1o ) )
8280, 81ffvelrnd 5629 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  (
f `  (inr `  (/) ) )  e.  A )
8382, 67jca 304 . . . . . 6  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  (
( f `  (inr `  (/) ) )  e.  A  /\  B  e.  A
) )
84 eqeq12 2183 . . . . . . . 8  |-  ( ( x  =  ( f `
 (inr `  (/) ) )  /\  y  =  B )  ->  ( x  =  y  <->  ( f `  (inr `  (/) ) )  =  B ) )
8584dcbid 833 . . . . . . 7  |-  ( ( x  =  ( f `
 (inr `  (/) ) )  /\  y  =  B )  ->  (DECID  x  =  y 
<-> DECID  ( f `  (inr `  (/) ) )  =  B ) )
8685rspc2gv 2846 . . . . . 6  |-  ( ( ( f `  (inr `  (/) ) )  e.  A  /\  B  e.  A
)  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID 
( f `  (inr `  (/) ) )  =  B ) )
8783, 65, 86sylc 62 . . . . 5  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  -> DECID  ( f `  (inr `  (/) ) )  =  B )
88 exmiddc 831 . . . . 5  |-  (DECID  ( f `
 (inr `  (/) ) )  =  B  ->  (
( f `  (inr `  (/) ) )  =  B  \/  -.  ( f `
 (inr `  (/) ) )  =  B ) )
8987, 88syl 14 . . . 4  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  (
( f `  (inr `  (/) ) )  =  B  \/  -.  ( f `
 (inr `  (/) ) )  =  B ) )
9064, 78, 89mpjaodan 793 . . 3  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  E. g 
g : om -1-1-> ( A  \  { B } ) )
916, 90exlimddv 1891 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  E. g  g : om -1-1-> ( A  \  { B } ) )
92 reldom 6719 . . . . . 6  |-  Rel  ~<_
9392brrelex2i 4653 . . . . 5  |-  ( om  ~<_  A  ->  A  e.  _V )
94 difexg 4128 . . . . 5  |-  ( A  e.  _V  ->  ( A  \  { B }
)  e.  _V )
9593, 94syl 14 . . . 4  |-  ( om  ~<_  A  ->  ( A  \  { B } )  e.  _V )
96953ad2ant2 1014 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  ( A  \  { B } )  e.  _V )
97 brdomg 6722 . . 3  |-  ( ( A  \  { B } )  e.  _V  ->  ( om  ~<_  ( A 
\  { B }
)  <->  E. g  g : om -1-1-> ( A  \  { B } ) ) )
9896, 97syl 14 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  ( om  ~<_  ( A 
\  { B }
)  <->  E. g  g : om -1-1-> ( A  \  { B } ) ) )
9991, 98mpbird 166 1  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  om  ~<_  ( A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348   E.wex 1485    e. wcel 2141    =/= wne 2340   A.wral 2448   _Vcvv 2730    \ cdif 3118    C_ wss 3121   (/)c0 3414   ifcif 3525   {csn 3581   class class class wbr 3987    |-> cmpt 4048   omcom 4572   ran crn 4610    |` cres 4611    o. ccom 4613    Fn wfn 5191   -->wf 5192   -1-1->wf1 5193   ` cfv 5196   1oc1o 6385    ~~ cen 6712    ~<_ cdom 6713   ⊔ cdju 7010  inlcinl 7018  inrcinr 7019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-1st 6116  df-2nd 6117  df-1o 6392  df-er 6509  df-en 6715  df-dom 6716  df-dju 7011  df-inl 7020  df-inr 7021  df-case 7057
This theorem is referenced by:  difinfinf  7074
  Copyright terms: Public domain W3C validator