ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difinfsn Unicode version

Theorem difinfsn 7161
Description: An infinite set minus one element is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
Assertion
Ref Expression
difinfsn  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  om  ~<_  ( A  \  { B } ) )
Distinct variable groups:    x, A, y   
x, B, y

Proof of Theorem difinfsn
Dummy variables  a  f  g  n  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omp1eom 7156 . . . . 5  |-  ( om 1o )  ~~  om
2 simp2 1000 . . . . 5  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  om  ~<_  A )
3 endomtr 6846 . . . . 5  |-  ( ( ( om 1o )  ~~  om 
/\  om  ~<_  A )  ->  ( om 1o )  ~<_  A )
41, 2, 3sylancr 414 . . . 4  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  ( om 1o )  ~<_  A )
5 brdomi 6805 . . . 4  |-  ( ( om 1o )  ~<_  A  ->  E. f  f :
( om 1o ) -1-1-> A
)
64, 5syl 14 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  E. f  f : ( om 1o ) -1-1-> A
)
7 inlresf1 7122 . . . . . . . 8  |-  (inl  |`  om ) : om -1-1-> ( om 1o )
8 f1co 5472 . . . . . . . 8  |-  ( ( f : ( om 1o ) -1-1-> A  /\  (inl  |` 
om ) : om -1-1-> ( om 1o ) )  -> 
( f  o.  (inl  |` 
om ) ) : om -1-1-> A )
97, 8mpan2 425 . . . . . . 7  |-  ( f : ( om 1o )
-1-1-> A  ->  ( f  o.  (inl  |`  om ) ) : om -1-1-> A )
109ad2antlr 489 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( f  o.  (inl  |` 
om ) ) : om -1-1-> A )
11 f1f 5460 . . . . . . . . . . . 12  |-  ( ( f  o.  (inl  |`  om )
) : om -1-1-> A  ->  ( f  o.  (inl  |` 
om ) ) : om --> A )
1210, 11syl 14 . . . . . . . . . . 11  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( f  o.  (inl  |` 
om ) ) : om --> A )
1312frnd 5414 . . . . . . . . . 10  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  ->  ran  ( f  o.  (inl  |` 
om ) )  C_  A )
1413sselda 3180 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  s  e. 
ran  ( f  o.  (inl  |`  om ) ) )  ->  s  e.  A )
15 simpllr 534 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  ( f `  (inr `  (/) ) )  =  B )
16 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  ( (
f  o.  (inl  |`  om )
) `  n )  =  B )
17 f1f 5460 . . . . . . . . . . . . . . . . . . . 20  |-  ( (inl  |`  om ) : om -1-1-> ( om 1o )  ->  (inl  |` 
om ) : om --> ( om 1o ) )
187, 17ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  (inl  |`  om ) : om --> ( om 1o )
19 simpr 110 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  n  e.  om )
20 fvco3 5629 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (inl  |`  om ) : om --> ( om 1o )  /\  n  e.  om )  ->  ( ( f  o.  (inl  |`  om )
) `  n )  =  ( f `  ( (inl  |`  om ) `  n ) ) )
2118, 19, 20sylancr 414 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  (
( f  o.  (inl  |` 
om ) ) `  n )  =  ( f `  ( (inl  |`  om ) `  n
) ) )
2219fvresd 5580 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  (
(inl  |`  om ) `  n )  =  (inl
`  n ) )
2322fveq2d 5559 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  (
f `  ( (inl  |` 
om ) `  n
) )  =  ( f `  (inl `  n ) ) )
2421, 23eqtrd 2226 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  (
( f  o.  (inl  |` 
om ) ) `  n )  =  ( f `  (inl `  n ) ) )
2524adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  ( (
f  o.  (inl  |`  om )
) `  n )  =  ( f `  (inl `  n ) ) )
2615, 16, 253eqtr2rd 2233 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  ( f `  (inl `  n )
)  =  ( f `
 (inr `  (/) ) ) )
27 simp-4r 542 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  f :
( om 1o ) -1-1-> A
)
28 djulcl 7112 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  om  ->  (inl `  n )  e.  ( om 1o ) )
2928ad2antlr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  (inl `  n
)  e.  ( om 1o ) )
30 0lt1o 6495 . . . . . . . . . . . . . . . . . 18  |-  (/)  e.  1o
31 djurcl 7113 . . . . . . . . . . . . . . . . . 18  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( om 1o ) )
3230, 31ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  (inr `  (/) )  e.  ( om 1o )
3332a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  (inr `  (/) )  e.  ( om 1o ) )
34 f1veqaeq 5813 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( om 1o ) -1-1-> A  /\  (
(inl `  n )  e.  ( om 1o )  /\  (inr `  (/) )  e.  ( om 1o ) ) )  ->  ( ( f `
 (inl `  n
) )  =  ( f `  (inr `  (/) ) )  ->  (inl `  n )  =  (inr
`  (/) ) ) )
3527, 29, 33, 34syl12anc 1247 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  ( (
f `  (inl `  n
) )  =  ( f `  (inr `  (/) ) )  ->  (inl `  n )  =  (inr
`  (/) ) ) )
3626, 35mpd 13 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  (inl `  n
)  =  (inr `  (/) ) )
3719adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  n  e.  om )
38 djune 7139 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  om  /\  (/) 
e.  1o )  -> 
(inl `  n )  =/=  (inr `  (/) ) )
3937, 30, 38sylancl 413 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  (inl `  n
)  =/=  (inr `  (/) ) )
4039neneqd 2385 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  /\  (
( f  o.  (inl  |` 
om ) ) `  n )  =  B )  ->  -.  (inl `  n )  =  (inr
`  (/) ) )
4136, 40pm2.65da 662 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  n  e. 
om )  ->  -.  ( ( f  o.  (inl  |`  om ) ) `
 n )  =  B )
4241ralrimiva 2567 . . . . . . . . . . . 12  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  ->  A. n  e.  om  -.  ( ( f  o.  (inl  |`  om ) ) `
 n )  =  B )
4312ffnd 5405 . . . . . . . . . . . . 13  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( f  o.  (inl  |` 
om ) )  Fn 
om )
44 eqeq1 2200 . . . . . . . . . . . . . . 15  |-  ( s  =  ( ( f  o.  (inl  |`  om )
) `  n )  ->  ( s  =  B  <-> 
( ( f  o.  (inl  |`  om ) ) `
 n )  =  B ) )
4544notbid 668 . . . . . . . . . . . . . 14  |-  ( s  =  ( ( f  o.  (inl  |`  om )
) `  n )  ->  ( -.  s  =  B  <->  -.  ( (
f  o.  (inl  |`  om )
) `  n )  =  B ) )
4645ralrn 5697 . . . . . . . . . . . . 13  |-  ( ( f  o.  (inl  |`  om )
)  Fn  om  ->  ( A. s  e.  ran  ( f  o.  (inl  |` 
om ) )  -.  s  =  B  <->  A. n  e.  om  -.  ( ( f  o.  (inl  |`  om )
) `  n )  =  B ) )
4743, 46syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( A. s  e. 
ran  ( f  o.  (inl  |`  om ) )  -.  s  =  B  <->  A. n  e.  om  -.  ( ( f  o.  (inl  |`  om ) ) `
 n )  =  B ) )
4842, 47mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  ->  A. s  e.  ran  ( f  o.  (inl  |` 
om ) )  -.  s  =  B )
4948r19.21bi 2582 . . . . . . . . . 10  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  s  e. 
ran  ( f  o.  (inl  |`  om ) ) )  ->  -.  s  =  B )
50 velsn 3636 . . . . . . . . . 10  |-  ( s  e.  { B }  <->  s  =  B )
5149, 50sylnibr 678 . . . . . . . . 9  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  s  e. 
ran  ( f  o.  (inl  |`  om ) ) )  ->  -.  s  e.  { B } )
5214, 51eldifd 3164 . . . . . . . 8  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o ) -1-1-> A )  /\  ( f `  (inr `  (/) ) )  =  B )  /\  s  e. 
ran  ( f  o.  (inl  |`  om ) ) )  ->  s  e.  ( A  \  { B } ) )
5352ex 115 . . . . . . 7  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( s  e.  ran  ( f  o.  (inl  |` 
om ) )  -> 
s  e.  ( A 
\  { B }
) ) )
5453ssrdv 3186 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  ->  ran  ( f  o.  (inl  |` 
om ) )  C_  ( A  \  { B } ) )
55 f1ssr 5467 . . . . . 6  |-  ( ( ( f  o.  (inl  |` 
om ) ) : om -1-1-> A  /\  ran  (
f  o.  (inl  |`  om )
)  C_  ( A  \  { B } ) )  ->  ( f  o.  (inl  |`  om ) ) : om -1-1-> ( A 
\  { B }
) )
5610, 54, 55syl2anc 411 . . . . 5  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  -> 
( f  o.  (inl  |` 
om ) ) : om -1-1-> ( A  \  { B } ) )
57 f1f 5460 . . . . . . 7  |-  ( ( f  o.  (inl  |`  om )
) : om -1-1-> ( A  \  { B } )  ->  (
f  o.  (inl  |`  om )
) : om --> ( A 
\  { B }
) )
58 omex 4626 . . . . . . 7  |-  om  e.  _V
59 fex 5788 . . . . . . 7  |-  ( ( ( f  o.  (inl  |` 
om ) ) : om --> ( A  \  { B } )  /\  om  e.  _V )  -> 
( f  o.  (inl  |` 
om ) )  e. 
_V )
6057, 58, 59sylancl 413 . . . . . 6  |-  ( ( f  o.  (inl  |`  om )
) : om -1-1-> ( A  \  { B } )  ->  (
f  o.  (inl  |`  om )
)  e.  _V )
61 f1eq1 5455 . . . . . . 7  |-  ( g  =  ( f  o.  (inl  |`  om ) )  ->  ( g : om -1-1-> ( A  \  { B } )  <->  ( f  o.  (inl  |`  om ) ) : om -1-1-> ( A 
\  { B }
) ) )
6261spcegv 2849 . . . . . 6  |-  ( ( f  o.  (inl  |`  om )
)  e.  _V  ->  ( ( f  o.  (inl  |` 
om ) ) : om -1-1-> ( A  \  { B } )  ->  E. g  g : om
-1-1-> ( A  \  { B } ) ) )
6360, 62mpcom 36 . . . . 5  |-  ( ( f  o.  (inl  |`  om )
) : om -1-1-> ( A  \  { B } )  ->  E. g 
g : om -1-1-> ( A  \  { B } ) )
6456, 63syl 14 . . . 4  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  (
f `  (inr `  (/) ) )  =  B )  ->  E. g  g : om
-1-1-> ( A  \  { B } ) )
65 simpl1 1002 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
6665adantr 276 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
67 simpl3 1004 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  B  e.  A )
6867adantr 276 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  B  e.  A )
69 simpr 110 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  f : ( om 1o )
-1-1-> A )
7069adantr 276 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  f :
( om 1o ) -1-1-> A
)
71 simpr 110 . . . . . . 7  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  -.  (
f `  (inr `  (/) ) )  =  B )
7271neqned 2371 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  ( f `  (inr `  (/) ) )  =/=  B )
73 eqid 2193 . . . . . 6  |-  ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `
 (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) )  =  ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `  (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) )
7466, 68, 70, 72, 73difinfsnlem 7160 . . . . 5  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `
 (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) ) : om -1-1-> ( A  \  { B } ) )
7558mptex 5785 . . . . . 6  |-  ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `
 (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) )  e.  _V
76 f1eq1 5455 . . . . . 6  |-  ( g  =  ( a  e. 
om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `
 (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) )  ->  (
g : om -1-1-> ( A  \  { B } )  <->  ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `
 (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) ) : om -1-1-> ( A  \  { B } ) ) )
7775, 76spcev 2856 . . . . 5  |-  ( ( a  e.  om  |->  if ( ( f `  (inl `  a ) )  =  B ,  ( f `  (inr `  (/) ) ) ,  ( f `  (inl `  a ) ) ) ) : om -1-1-> ( A  \  { B } )  ->  E. g 
g : om -1-1-> ( A  \  { B } ) )
7874, 77syl 14 . . . 4  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  /\  -.  ( f `  (inr `  (/) ) )  =  B )  ->  E. g 
g : om -1-1-> ( A  \  { B } ) )
79 f1f 5460 . . . . . . . . 9  |-  ( f : ( om 1o )
-1-1-> A  ->  f :
( om 1o ) --> A )
8069, 79syl 14 . . . . . . . 8  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  f : ( om 1o ) --> A )
8132a1i 9 . . . . . . . 8  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  (inr `  (/) )  e.  ( om 1o ) )
8280, 81ffvelcdmd 5695 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  (
f `  (inr `  (/) ) )  e.  A )
8382, 67jca 306 . . . . . 6  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  (
( f `  (inr `  (/) ) )  e.  A  /\  B  e.  A
) )
84 eqeq12 2206 . . . . . . . 8  |-  ( ( x  =  ( f `
 (inr `  (/) ) )  /\  y  =  B )  ->  ( x  =  y  <->  ( f `  (inr `  (/) ) )  =  B ) )
8584dcbid 839 . . . . . . 7  |-  ( ( x  =  ( f `
 (inr `  (/) ) )  /\  y  =  B )  ->  (DECID  x  =  y 
<-> DECID  ( f `  (inr `  (/) ) )  =  B ) )
8685rspc2gv 2877 . . . . . 6  |-  ( ( ( f `  (inr `  (/) ) )  e.  A  /\  B  e.  A
)  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID 
( f `  (inr `  (/) ) )  =  B ) )
8783, 65, 86sylc 62 . . . . 5  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  -> DECID  ( f `  (inr `  (/) ) )  =  B )
88 exmiddc 837 . . . . 5  |-  (DECID  ( f `
 (inr `  (/) ) )  =  B  ->  (
( f `  (inr `  (/) ) )  =  B  \/  -.  ( f `
 (inr `  (/) ) )  =  B ) )
8987, 88syl 14 . . . 4  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  (
( f `  (inr `  (/) ) )  =  B  \/  -.  ( f `
 (inr `  (/) ) )  =  B ) )
9064, 78, 89mpjaodan 799 . . 3  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  /\  f : ( om 1o )
-1-1-> A )  ->  E. g 
g : om -1-1-> ( A  \  { B } ) )
916, 90exlimddv 1910 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  E. g  g : om -1-1-> ( A  \  { B } ) )
92 reldom 6801 . . . . . 6  |-  Rel  ~<_
9392brrelex2i 4704 . . . . 5  |-  ( om  ~<_  A  ->  A  e.  _V )
94 difexg 4171 . . . . 5  |-  ( A  e.  _V  ->  ( A  \  { B }
)  e.  _V )
9593, 94syl 14 . . . 4  |-  ( om  ~<_  A  ->  ( A  \  { B } )  e.  _V )
96953ad2ant2 1021 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  ( A  \  { B } )  e.  _V )
97 brdomg 6804 . . 3  |-  ( ( A  \  { B } )  e.  _V  ->  ( om  ~<_  ( A 
\  { B }
)  <->  E. g  g : om -1-1-> ( A  \  { B } ) ) )
9896, 97syl 14 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  ( om  ~<_  ( A 
\  { B }
)  <->  E. g  g : om -1-1-> ( A  \  { B } ) ) )
9991, 98mpbird 167 1  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  om  ~<_  ( A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164    =/= wne 2364   A.wral 2472   _Vcvv 2760    \ cdif 3151    C_ wss 3154   (/)c0 3447   ifcif 3558   {csn 3619   class class class wbr 4030    |-> cmpt 4091   omcom 4623   ran crn 4661    |` cres 4662    o. ccom 4664    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   ` cfv 5255   1oc1o 6464    ~~ cen 6794    ~<_ cdom 6795   ⊔ cdju 7098  inlcinl 7106  inrcinr 7107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-er 6589  df-en 6797  df-dom 6798  df-dju 7099  df-inl 7108  df-inr 7109  df-case 7145
This theorem is referenced by:  difinfinf  7162
  Copyright terms: Public domain W3C validator