| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeqan12d | Unicode version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 |
|
| eqeqan12d.2 |
|
| Ref | Expression |
|---|---|
| eqeqan12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 |
. 2
| |
| 2 | eqeqan12d.2 |
. 2
| |
| 3 | eqeq12 2209 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqeqan12rd 2213 eqfnfv 5662 eqfnfv2 5663 f1mpt 5821 xpopth 6243 f1o2ndf1 6295 ecopoveq 6698 xpdom2 6899 djune 7153 addpipqqs 7454 enq0enq 7515 enq0sym 7516 enq0tr 7518 enq0breq 7520 preqlu 7556 cnegexlem1 8218 neg11 8294 subeqrev 8419 cnref1o 9742 xneg11 9926 modlteq 10506 sq11 10721 qsqeqor 10759 fz1eqb 10899 eqwrd 10992 cj11 11087 sqrt11 11221 sqabs 11264 recan 11291 reeff1 11882 efieq 11917 xpsff1o 13051 ismhm 13163 isdomn 13901 tgtop11 14396 ioocosf1o 15174 mpodvdsmulf1o 15310 |
| Copyright terms: Public domain | W3C validator |