| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeqan12d | Unicode version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 |
|
| eqeqan12d.2 |
|
| Ref | Expression |
|---|---|
| eqeqan12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 |
. 2
| |
| 2 | eqeqan12d.2 |
. 2
| |
| 3 | eqeq12 2242 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eqeqan12rd 2246 eqfnfv 5731 eqfnfv2 5732 f1mpt 5894 xpopth 6320 f1o2ndf1 6372 ecopoveq 6775 xpdom2 6986 djune 7241 addpipqqs 7553 enq0enq 7614 enq0sym 7615 enq0tr 7617 enq0breq 7619 preqlu 7655 cnegexlem1 8317 neg11 8393 subeqrev 8518 cnref1o 9842 xneg11 10026 modlteq 10614 sq11 10829 qsqeqor 10867 fz1eqb 11007 eqwrd 11107 s111 11159 ccatopth 11243 wrd2ind 11250 cj11 11411 sqrt11 11545 sqabs 11588 recan 11615 reeff1 12206 efieq 12241 xpsff1o 13377 ismhm 13489 isdomn 14227 tgtop11 14744 ioocosf1o 15522 mpodvdsmulf1o 15658 iswlk 16029 |
| Copyright terms: Public domain | W3C validator |