| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeqan12d | Unicode version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 |
|
| eqeqan12d.2 |
|
| Ref | Expression |
|---|---|
| eqeqan12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 |
. 2
| |
| 2 | eqeqan12d.2 |
. 2
| |
| 3 | eqeq12 2217 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: eqeqan12rd 2221 eqfnfv 5676 eqfnfv2 5677 f1mpt 5839 xpopth 6261 f1o2ndf1 6313 ecopoveq 6716 xpdom2 6925 djune 7179 addpipqqs 7482 enq0enq 7543 enq0sym 7544 enq0tr 7546 enq0breq 7548 preqlu 7584 cnegexlem1 8246 neg11 8322 subeqrev 8447 cnref1o 9771 xneg11 9955 modlteq 10540 sq11 10755 qsqeqor 10793 fz1eqb 10933 eqwrd 11032 s111 11083 cj11 11187 sqrt11 11321 sqabs 11364 recan 11391 reeff1 11982 efieq 12017 xpsff1o 13152 ismhm 13264 isdomn 14002 tgtop11 14519 ioocosf1o 15297 mpodvdsmulf1o 15433 |
| Copyright terms: Public domain | W3C validator |