| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeqan12d | Unicode version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 |
|
| eqeqan12d.2 |
|
| Ref | Expression |
|---|---|
| eqeqan12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 |
. 2
| |
| 2 | eqeqan12d.2 |
. 2
| |
| 3 | eqeq12 2209 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqeqan12rd 2213 eqfnfv 5662 eqfnfv2 5663 f1mpt 5821 xpopth 6243 f1o2ndf1 6295 ecopoveq 6698 xpdom2 6899 djune 7153 addpipqqs 7456 enq0enq 7517 enq0sym 7518 enq0tr 7520 enq0breq 7522 preqlu 7558 cnegexlem1 8220 neg11 8296 subeqrev 8421 cnref1o 9744 xneg11 9928 modlteq 10508 sq11 10723 qsqeqor 10761 fz1eqb 10901 eqwrd 10994 cj11 11089 sqrt11 11223 sqabs 11266 recan 11293 reeff1 11884 efieq 11919 xpsff1o 13053 ismhm 13165 isdomn 13903 tgtop11 14420 ioocosf1o 15198 mpodvdsmulf1o 15334 |
| Copyright terms: Public domain | W3C validator |