![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeqan12d | Unicode version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
eqeqan12d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eqeqan12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeqan12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeqan12d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqeqan12d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | eqeq12 2206 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2an 289 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: eqeqan12rd 2210 eqfnfv 5656 eqfnfv2 5657 f1mpt 5815 xpopth 6231 f1o2ndf1 6283 ecopoveq 6686 xpdom2 6887 djune 7139 addpipqqs 7432 enq0enq 7493 enq0sym 7494 enq0tr 7496 enq0breq 7498 preqlu 7534 cnegexlem1 8196 neg11 8272 subeqrev 8397 cnref1o 9719 xneg11 9903 modlteq 10471 sq11 10686 qsqeqor 10724 fz1eqb 10864 eqwrd 10957 cj11 11052 sqrt11 11186 sqabs 11229 recan 11256 reeff1 11846 efieq 11881 xpsff1o 12935 ismhm 13036 isdomn 13768 tgtop11 14255 ioocosf1o 15030 |
Copyright terms: Public domain | W3C validator |