![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeqan12d | Unicode version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
eqeqan12d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eqeqan12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeqan12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeqan12d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqeqan12d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | eqeq12 2206 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2an 289 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: eqeqan12rd 2210 eqfnfv 5655 eqfnfv2 5656 f1mpt 5814 xpopth 6229 f1o2ndf1 6281 ecopoveq 6684 xpdom2 6885 djune 7137 addpipqqs 7430 enq0enq 7491 enq0sym 7492 enq0tr 7494 enq0breq 7496 preqlu 7532 cnegexlem1 8194 neg11 8270 subeqrev 8395 cnref1o 9716 xneg11 9900 modlteq 10468 sq11 10683 qsqeqor 10721 fz1eqb 10861 eqwrd 10954 cj11 11049 sqrt11 11183 sqabs 11226 recan 11253 reeff1 11843 efieq 11878 xpsff1o 12932 ismhm 13033 isdomn 13765 tgtop11 14244 ioocosf1o 14989 |
Copyright terms: Public domain | W3C validator |