| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeqan12d | Unicode version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 |
|
| eqeqan12d.2 |
|
| Ref | Expression |
|---|---|
| eqeqan12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 |
. 2
| |
| 2 | eqeqan12d.2 |
. 2
| |
| 3 | eqeq12 2220 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: eqeqan12rd 2224 eqfnfv 5700 eqfnfv2 5701 f1mpt 5863 xpopth 6285 f1o2ndf1 6337 ecopoveq 6740 xpdom2 6951 djune 7206 addpipqqs 7518 enq0enq 7579 enq0sym 7580 enq0tr 7582 enq0breq 7584 preqlu 7620 cnegexlem1 8282 neg11 8358 subeqrev 8483 cnref1o 9807 xneg11 9991 modlteq 10579 sq11 10794 qsqeqor 10832 fz1eqb 10972 eqwrd 11071 s111 11123 ccatopth 11207 wrd2ind 11214 cj11 11331 sqrt11 11465 sqabs 11508 recan 11535 reeff1 12126 efieq 12161 xpsff1o 13296 ismhm 13408 isdomn 14146 tgtop11 14663 ioocosf1o 15441 mpodvdsmulf1o 15577 |
| Copyright terms: Public domain | W3C validator |