ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  th3qlem1 Unicode version

Theorem th3qlem1 6615
Description: Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60. The third hypothesis is the compatibility assumption. (Contributed by NM, 3-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
th3qlem1.1  |-  .~  Er  S
th3qlem1.3  |-  ( ( ( y  e.  S  /\  w  e.  S
)  /\  ( z  e.  S  /\  v  e.  S ) )  -> 
( ( y  .~  w  /\  z  .~  v
)  ->  ( y  .+  z )  .~  (
w  .+  v )
) )
Assertion
Ref Expression
th3qlem1  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  ->  E* x E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )
)
Distinct variable groups:    x, y, z, w, v,  .+    x,  .~ , y, z, w, v    x, S, y, z, w, v   
x, A, y, z, w, v    x, B, y, z, w, v

Proof of Theorem th3qlem1
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 ee4anv 1927 . . . 4  |-  ( E. y E. z E. w E. v ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [ (
y  .+  z ) ]  .~  )  /\  (
( A  =  [
w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ ( w  .+  v ) ]  .~  ) )  <->  ( E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) ) )
2 an4 581 . . . . . . 7  |-  ( ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [ (
y  .+  z ) ]  .~  )  /\  (
( A  =  [
w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ ( w  .+  v ) ]  .~  ) )  <->  ( (
( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) )  /\  (
x  =  [ ( y  .+  z ) ]  .~  /\  u  =  [ ( w  .+  v ) ]  .~  ) ) )
3 eleq1 2233 . . . . . . . . . . . . 13  |-  ( A  =  [ y ]  .~  ->  ( A  e.  ( S /.  .~  ) 
<->  [ y ]  .~  e.  ( S /.  .~  ) ) )
4 eleq1 2233 . . . . . . . . . . . . 13  |-  ( B  =  [ z ]  .~  ->  ( B  e.  ( S /.  .~  ) 
<->  [ z ]  .~  e.  ( S /.  .~  ) ) )
53, 4bi2anan9 601 . . . . . . . . . . . 12  |-  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  ->  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  <->  ( [
y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  ) ) ) )
65adantr 274 . . . . . . . . . . 11  |-  ( ( ( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) )  ->  (
( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  <-> 
( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
) ) )
76biimpac 296 . . . . . . . . . 10  |-  ( ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  /\  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) ) )  ->  ( [
y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  ) ) )
8 eqtr2 2189 . . . . . . . . . . . . 13  |-  ( ( A  =  [ y ]  .~  /\  A  =  [ w ]  .~  )  ->  [ y ]  .~  =  [ w ]  .~  )
9 eqtr2 2189 . . . . . . . . . . . . 13  |-  ( ( B  =  [ z ]  .~  /\  B  =  [ v ]  .~  )  ->  [ z ]  .~  =  [ v ]  .~  )
108, 9anim12i 336 . . . . . . . . . . . 12  |-  ( ( ( A  =  [
y ]  .~  /\  A  =  [ w ]  .~  )  /\  ( B  =  [ z ]  .~  /\  B  =  [ v ]  .~  ) )  ->  ( [ y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )
1110an4s 583 . . . . . . . . . . 11  |-  ( ( ( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) )  ->  ( [ y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )
1211adantl 275 . . . . . . . . . 10  |-  ( ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  /\  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) ) )  ->  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )
13 th3qlem1.1 . . . . . . . . . . . 12  |-  .~  Er  S
1413a1i 9 . . . . . . . . . . 11  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  .~  Er  S )
15 simprl 526 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ y ]  .~  =  [
w ]  .~  )
16 erdm 6523 . . . . . . . . . . . . . . . 16  |-  (  .~  Er  S  ->  dom  .~  =  S )
1713, 16ax-mp 5 . . . . . . . . . . . . . . 15  |-  dom  .~  =  S
18 simpll 524 . . . . . . . . . . . . . . 15  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ y ]  .~  e.  ( S /.  .~  )
)
19 ecelqsdm 6583 . . . . . . . . . . . . . . 15  |-  ( ( dom  .~  =  S  /\  [ y ]  .~  e.  ( S /.  .~  ) )  ->  y  e.  S
)
2017, 18, 19sylancr 412 . . . . . . . . . . . . . 14  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  y  e.  S )
2114, 20erth 6557 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  (
y  .~  w  <->  [ y ]  .~  =  [ w ]  .~  ) )
2215, 21mpbird 166 . . . . . . . . . . . 12  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  y  .~  w )
23 simprr 527 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ z ]  .~  =  [
v ]  .~  )
24 simplr 525 . . . . . . . . . . . . . . 15  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ z ]  .~  e.  ( S /.  .~  )
)
25 ecelqsdm 6583 . . . . . . . . . . . . . . 15  |-  ( ( dom  .~  =  S  /\  [ z ]  .~  e.  ( S /.  .~  ) )  ->  z  e.  S
)
2617, 24, 25sylancr 412 . . . . . . . . . . . . . 14  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  z  e.  S )
2714, 26erth 6557 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  (
z  .~  v  <->  [ z ]  .~  =  [ v ]  .~  ) )
2823, 27mpbird 166 . . . . . . . . . . . 12  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  z  .~  v )
2915, 18eqeltrrd 2248 . . . . . . . . . . . . . 14  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ w ]  .~  e.  ( S /.  .~  ) )
30 ecelqsdm 6583 . . . . . . . . . . . . . 14  |-  ( ( dom  .~  =  S  /\  [ w ]  .~  e.  ( S /.  .~  ) )  ->  w  e.  S )
3117, 29, 30sylancr 412 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  w  e.  S )
3223, 24eqeltrrd 2248 . . . . . . . . . . . . . 14  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ v ]  .~  e.  ( S /.  .~  )
)
33 ecelqsdm 6583 . . . . . . . . . . . . . 14  |-  ( ( dom  .~  =  S  /\  [ v ]  .~  e.  ( S /.  .~  ) )  ->  v  e.  S
)
3417, 32, 33sylancr 412 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  v  e.  S )
35 th3qlem1.3 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  S  /\  w  e.  S
)  /\  ( z  e.  S  /\  v  e.  S ) )  -> 
( ( y  .~  w  /\  z  .~  v
)  ->  ( y  .+  z )  .~  (
w  .+  v )
) )
3620, 31, 26, 34, 35syl22anc 1234 . . . . . . . . . . . 12  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  (
( y  .~  w  /\  z  .~  v
)  ->  ( y  .+  z )  .~  (
w  .+  v )
) )
3722, 28, 36mp2and 431 . . . . . . . . . . 11  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  (
y  .+  z )  .~  ( w  .+  v
) )
3814, 37erthi 6559 . . . . . . . . . 10  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ ( y  .+  z ) ]  .~  =  [
( w  .+  v
) ]  .~  )
397, 12, 38syl2anc 409 . . . . . . . . 9  |-  ( ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  /\  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) ) )  ->  [ (
y  .+  z ) ]  .~  =  [ ( w  .+  v ) ]  .~  )
40 eqeq12 2183 . . . . . . . . 9  |-  ( ( x  =  [ ( y  .+  z ) ]  .~  /\  u  =  [ ( w  .+  v ) ]  .~  )  ->  ( x  =  u  <->  [ ( y  .+  z ) ]  .~  =  [ ( w  .+  v ) ]  .~  ) )
4139, 40syl5ibrcom 156 . . . . . . . 8  |-  ( ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  /\  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) ) )  ->  ( (
x  =  [ ( y  .+  z ) ]  .~  /\  u  =  [ ( w  .+  v ) ]  .~  )  ->  x  =  u ) )
4241expimpd 361 . . . . . . 7  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  -> 
( ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) )  /\  ( x  =  [ ( y  .+  z ) ]  .~  /\  u  =  [ ( w  .+  v ) ]  .~  ) )  ->  x  =  u ) )
432, 42syl5bi 151 . . . . . 6  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  -> 
( ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  ( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
4443exlimdvv 1890 . . . . 5  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  -> 
( E. w E. v ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  ( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
4544exlimdvv 1890 . . . 4  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  -> 
( E. y E. z E. w E. v ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  ( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
461, 45syl5bir 152 . . 3  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  -> 
( ( E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
4746alrimivv 1868 . 2  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  ->  A. x A. u ( ( E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
48 eqeq1 2177 . . . . . 6  |-  ( x  =  u  ->  (
x  =  [ ( y  .+  z ) ]  .~  <->  u  =  [ ( y  .+  z ) ]  .~  ) )
4948anbi2d 461 . . . . 5  |-  ( x  =  u  ->  (
( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [ (
y  .+  z ) ]  .~  )  <->  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  u  =  [
( y  .+  z
) ]  .~  )
) )
50492exbidv 1861 . . . 4  |-  ( x  =  u  ->  ( E. y E. z ( ( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [ ( y  .+  z ) ]  .~  ) 
<->  E. y E. z
( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  u  =  [ (
y  .+  z ) ]  .~  ) ) )
51 eceq1 6548 . . . . . . . 8  |-  ( y  =  w  ->  [ y ]  .~  =  [
w ]  .~  )
5251eqeq2d 2182 . . . . . . 7  |-  ( y  =  w  ->  ( A  =  [ y ]  .~  <->  A  =  [
w ]  .~  )
)
53 eceq1 6548 . . . . . . . 8  |-  ( z  =  v  ->  [ z ]  .~  =  [
v ]  .~  )
5453eqeq2d 2182 . . . . . . 7  |-  ( z  =  v  ->  ( B  =  [ z ]  .~  <->  B  =  [
v ]  .~  )
)
5552, 54bi2anan9 601 . . . . . 6  |-  ( ( y  =  w  /\  z  =  v )  ->  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  <->  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) ) )
56 oveq12 5862 . . . . . . . 8  |-  ( ( y  =  w  /\  z  =  v )  ->  ( y  .+  z
)  =  ( w 
.+  v ) )
5756eceq1d 6549 . . . . . . 7  |-  ( ( y  =  w  /\  z  =  v )  ->  [ ( y  .+  z ) ]  .~  =  [ ( w  .+  v ) ]  .~  )
5857eqeq2d 2182 . . . . . 6  |-  ( ( y  =  w  /\  z  =  v )  ->  ( u  =  [
( y  .+  z
) ]  .~  <->  u  =  [ ( w  .+  v ) ]  .~  ) )
5955, 58anbi12d 470 . . . . 5  |-  ( ( y  =  w  /\  z  =  v )  ->  ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  u  =  [
( y  .+  z
) ]  .~  )  <->  ( ( A  =  [
w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ ( w  .+  v ) ]  .~  ) ) )
6059cbvex2v 1917 . . . 4  |-  ( E. y E. z ( ( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  u  =  [ ( y  .+  z ) ]  .~  ) 
<->  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )
6150, 60bitrdi 195 . . 3  |-  ( x  =  u  ->  ( E. y E. z ( ( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [ ( y  .+  z ) ]  .~  ) 
<->  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) ) )
6261mo4 2080 . 2  |-  ( E* x E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  <->  A. x A. u ( ( E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
6347, 62sylibr 133 1  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  ->  E* x E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485   E*wmo 2020    e. wcel 2141   class class class wbr 3989   dom cdm 4611  (class class class)co 5853    Er wer 6510   [cec 6511   /.cqs 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fv 5206  df-ov 5856  df-er 6513  df-ec 6515  df-qs 6519
This theorem is referenced by:  th3qlem2  6616
  Copyright terms: Public domain W3C validator