ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcoi1 Unicode version

Theorem relcoi1 5172
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.)
Assertion
Ref Expression
relcoi1  |-  ( Rel 
R  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  R )

Proof of Theorem relcoi1
StepHypRef Expression
1 relfld 5169 . . 3  |-  ( Rel 
R  ->  U. U. R  =  ( dom  R  u.  ran  R ) )
2 resundi 4932 . . . . 5  |-  (  _I  |`  ( dom  R  u.  ran  R ) )  =  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) )
3 coeq2 4797 . . . . 5  |-  ( (  _I  |`  ( dom  R  u.  ran  R ) )  =  ( (  _I  |`  dom  R )  u.  (  _I  |`  ran  R
) )  ->  ( R  o.  (  _I  |`  ( dom  R  u.  ran  R ) ) )  =  ( R  o.  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) ) ) )
4 coundi 5142 . . . . . . 7  |-  ( R  o.  ( (  _I  |`  dom  R )  u.  (  _I  |`  ran  R
) ) )  =  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )
5 resco 5145 . . . . . . . 8  |-  ( ( R  o.  _I  )  |` 
dom  R )  =  ( R  o.  (  _I  |`  dom  R ) )
6 coi1 5156 . . . . . . . . 9  |-  ( Rel 
R  ->  ( R  o.  _I  )  =  R )
7 reseq1 4913 . . . . . . . . . 10  |-  ( ( R  o.  _I  )  =  R  ->  ( ( R  o.  _I  )  |` 
dom  R )  =  ( R  |`  dom  R
) )
8 resdm 4958 . . . . . . . . . . 11  |-  ( Rel 
R  ->  ( R  |` 
dom  R )  =  R )
9 eqtr 2205 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  o.  _I  )  |`  dom  R
)  =  ( R  |`  dom  R )  /\  ( R  |`  dom  R
)  =  R )  ->  ( ( R  o.  _I  )  |`  dom  R )  =  R )
10 eqtr 2205 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  o.  (  _I  |`  dom  R ) )  =  ( ( R  o.  _I  )  |` 
dom  R )  /\  ( ( R  o.  _I  )  |`  dom  R
)  =  R )  ->  ( R  o.  (  _I  |`  dom  R
) )  =  R )
11 resco 5145 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  o.  _I  )  |` 
ran  R )  =  ( R  o.  (  _I  |`  ran  R ) )
12 uneq1 3294 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  o.  (  _I  |`  dom  R ) )  =  R  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  o.  (  _I  |` 
ran  R ) ) ) )
13 reseq1 4913 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  o.  _I  )  =  R  ->  ( ( R  o.  _I  )  |` 
ran  R )  =  ( R  |`  ran  R
) )
14 eqtr 2205 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( R  o.  (  _I  |`  ran  R ) )  =  ( ( R  o.  _I  )  |` 
ran  R )  /\  ( ( R  o.  _I  )  |`  ran  R
)  =  ( R  |`  ran  R ) )  ->  ( R  o.  (  _I  |`  ran  R
) )  =  ( R  |`  ran  R ) )
1514uneq2d 3301 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( R  o.  (  _I  |`  ran  R ) )  =  ( ( R  o.  _I  )  |` 
ran  R )  /\  ( ( R  o.  _I  )  |`  ran  R
)  =  ( R  |`  ran  R ) )  ->  ( R  u.  ( R  o.  (  _I  |`  ran  R ) ) )  =  ( R  u.  ( R  |`  ran  R ) ) )
16 eqtr 2205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  /\  ( R  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  |`  ran  R ) ) )  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  |`  ran  R ) ) )
17 resss 4943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( R  |`  ran  R )  C_  R
18 ssequn2 3320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( R  |`  ran  R ) 
C_  R  <->  ( R  u.  ( R  |`  ran  R
) )  =  R )
1917, 18mpbi 145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( R  u.  ( R  |`  ran  R ) )  =  R
2019, 6eqtr4id 2239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( Rel 
R  ->  ( R  u.  ( R  |`  ran  R
) )  =  ( R  o.  _I  )
)
21 eqeq1 2194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  |`  ran  R ) )  ->  ( (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) 
<->  ( R  u.  ( R  |`  ran  R ) )  =  ( R  o.  _I  ) ) )
2220, 21imbitrrid 156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  |`  ran  R ) )  ->  ( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) )
2316, 22syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  /\  ( R  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  |`  ran  R ) ) )  ->  ( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) )
2423ex 115 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  ->  ( ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  |`  ran  R ) )  ->  ( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) )
2524com3l 81 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  |`  ran  R ) )  ->  ( Rel  R  ->  ( ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  ->  ( ( R  o.  (  _I  |` 
dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
2615, 25syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( R  o.  (  _I  |`  ran  R ) )  =  ( ( R  o.  _I  )  |` 
ran  R )  /\  ( ( R  o.  _I  )  |`  ran  R
)  =  ( R  |`  ran  R ) )  ->  ( Rel  R  ->  ( ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) )
2726ex 115 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  o.  (  _I  |`  ran  R ) )  =  ( ( R  o.  _I  )  |`  ran  R )  ->  (
( ( R  o.  _I  )  |`  ran  R
)  =  ( R  |`  ran  R )  -> 
( Rel  R  ->  ( ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) ) )
2827eqcoms 2190 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  o.  _I  )  |`  ran  R )  =  ( R  o.  (  _I  |`  ran  R
) )  ->  (
( ( R  o.  _I  )  |`  ran  R
)  =  ( R  |`  ran  R )  -> 
( Rel  R  ->  ( ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) ) )
2928com3l 81 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  o.  _I  )  |`  ran  R )  =  ( R  |`  ran  R )  ->  ( Rel  R  ->  ( (
( R  o.  _I  )  |`  ran  R )  =  ( R  o.  (  _I  |`  ran  R
) )  ->  (
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) ) )
3013, 29syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  o.  _I  )  =  R  ->  ( Rel 
R  ->  ( (
( R  o.  _I  )  |`  ran  R )  =  ( R  o.  (  _I  |`  ran  R
) )  ->  (
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) ) )
316, 30mpcom 36 . . . . . . . . . . . . . . . . . . . 20  |-  ( Rel 
R  ->  ( (
( R  o.  _I  )  |`  ran  R )  =  ( R  o.  (  _I  |`  ran  R
) )  ->  (
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) )
3231com3l 81 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  o.  _I  )  |`  ran  R )  =  ( R  o.  (  _I  |`  ran  R
) )  ->  (
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
3311, 12, 32mpsyl 65 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  o.  (  _I  |`  dom  R ) )  =  R  ->  ( Rel  R  ->  ( ( R  o.  (  _I  |` 
dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) )
3410, 33syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  o.  (  _I  |`  dom  R ) )  =  ( ( R  o.  _I  )  |` 
dom  R )  /\  ( ( R  o.  _I  )  |`  dom  R
)  =  R )  ->  ( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) )
3534ex 115 . . . . . . . . . . . . . . . 16  |-  ( ( R  o.  (  _I  |`  dom  R ) )  =  ( ( R  o.  _I  )  |`  dom  R )  ->  (
( ( R  o.  _I  )  |`  dom  R
)  =  R  -> 
( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
3635eqcoms 2190 . . . . . . . . . . . . . . 15  |-  ( ( ( R  o.  _I  )  |`  dom  R )  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( ( R  o.  _I  )  |`  dom  R
)  =  R  -> 
( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
3736com3l 81 . . . . . . . . . . . . . 14  |-  ( ( ( R  o.  _I  )  |`  dom  R )  =  R  ->  ( Rel  R  ->  ( (
( R  o.  _I  )  |`  dom  R )  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
389, 37syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( R  o.  _I  )  |`  dom  R
)  =  ( R  |`  dom  R )  /\  ( R  |`  dom  R
)  =  R )  ->  ( Rel  R  ->  ( ( ( R  o.  _I  )  |`  dom  R )  =  ( R  o.  (  _I  |`  dom  R ) )  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) )
3938ex 115 . . . . . . . . . . . 12  |-  ( ( ( R  o.  _I  )  |`  dom  R )  =  ( R  |`  dom  R )  ->  (
( R  |`  dom  R
)  =  R  -> 
( Rel  R  ->  ( ( ( R  o.  _I  )  |`  dom  R
)  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) ) )
4039com3l 81 . . . . . . . . . . 11  |-  ( ( R  |`  dom  R )  =  R  ->  ( Rel  R  ->  ( (
( R  o.  _I  )  |`  dom  R )  =  ( R  |`  dom  R )  ->  (
( ( R  o.  _I  )  |`  dom  R
)  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) ) )
418, 40mpcom 36 . . . . . . . . . 10  |-  ( Rel 
R  ->  ( (
( R  o.  _I  )  |`  dom  R )  =  ( R  |`  dom  R )  ->  (
( ( R  o.  _I  )  |`  dom  R
)  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
427, 41syl5com 29 . . . . . . . . 9  |-  ( ( R  o.  _I  )  =  R  ->  ( Rel 
R  ->  ( (
( R  o.  _I  )  |`  dom  R )  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
436, 42mpcom 36 . . . . . . . 8  |-  ( Rel 
R  ->  ( (
( R  o.  _I  )  |`  dom  R )  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) )
445, 43mpi 15 . . . . . . 7  |-  ( Rel 
R  ->  ( ( R  o.  (  _I  |` 
dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) )
454, 44eqtrid 2232 . . . . . 6  |-  ( Rel 
R  ->  ( R  o.  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) ) )  =  ( R  o.  _I  ) )
46 eqeq1 2194 . . . . . 6  |-  ( ( R  o.  (  _I  |`  ( dom  R  u.  ran  R ) ) )  =  ( R  o.  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) ) )  ->  ( ( R  o.  (  _I  |`  ( dom  R  u.  ran  R ) ) )  =  ( R  o.  _I  )  <->  ( R  o.  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) ) )  =  ( R  o.  _I  ) ) )
4745, 46imbitrrid 156 . . . . 5  |-  ( ( R  o.  (  _I  |`  ( dom  R  u.  ran  R ) ) )  =  ( R  o.  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) ) )  ->  ( Rel  R  ->  ( R  o.  (  _I  |`  ( dom 
R  u.  ran  R
) ) )  =  ( R  o.  _I  ) ) )
482, 3, 47mp2b 8 . . . 4  |-  ( Rel 
R  ->  ( R  o.  (  _I  |`  ( dom  R  u.  ran  R
) ) )  =  ( R  o.  _I  ) )
49 reseq2 4914 . . . . . 6  |-  ( U. U. R  =  ( dom 
R  u.  ran  R
)  ->  (  _I  |` 
U. U. R )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
5049coeq2d 4801 . . . . 5  |-  ( U. U. R  =  ( dom 
R  u.  ran  R
)  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  ( R  o.  (  _I  |`  ( dom  R  u.  ran  R ) ) ) )
5150eqeq1d 2196 . . . 4  |-  ( U. U. R  =  ( dom 
R  u.  ran  R
)  ->  ( ( R  o.  (  _I  |` 
U. U. R ) )  =  ( R  o.  _I  )  <->  ( R  o.  (  _I  |`  ( dom 
R  u.  ran  R
) ) )  =  ( R  o.  _I  ) ) )
5248, 51imbitrrid 156 . . 3  |-  ( U. U. R  =  ( dom 
R  u.  ran  R
)  ->  ( Rel  R  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  ( R  o.  _I  ) ) )
531, 52mpcom 36 . 2  |-  ( Rel 
R  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  ( R  o.  _I  ) )
5453, 6eqtrd 2220 1  |-  ( Rel 
R  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    u. cun 3139    C_ wss 3141   U.cuni 3821    _I cid 4300   dom cdm 4638   ran crn 4639    |` cres 4640    o. ccom 4642   Rel wrel 4643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator