| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneqdifeqim | Unicode version | ||
| Description: Two ways that |
| Ref | Expression |
|---|---|
| uneqdifeqim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 3348 |
. . . 4
| |
| 2 | eqtr 2247 |
. . . . . 6
| |
| 3 | 2 | eqcomd 2235 |
. . . . 5
|
| 4 | difeq1 3315 |
. . . . . 6
| |
| 5 | difun2 3571 |
. . . . . 6
| |
| 6 | eqtr 2247 |
. . . . . . 7
| |
| 7 | incom 3396 |
. . . . . . . . . 10
| |
| 8 | 7 | eqeq1i 2237 |
. . . . . . . . 9
|
| 9 | disj3 3544 |
. . . . . . . . 9
| |
| 10 | 8, 9 | bitri 184 |
. . . . . . . 8
|
| 11 | eqtr 2247 |
. . . . . . . . . 10
| |
| 12 | 11 | expcom 116 |
. . . . . . . . 9
|
| 13 | 12 | eqcoms 2232 |
. . . . . . . 8
|
| 14 | 10, 13 | sylbi 121 |
. . . . . . 7
|
| 15 | 6, 14 | syl5com 29 |
. . . . . 6
|
| 16 | 4, 5, 15 | sylancl 413 |
. . . . 5
|
| 17 | 3, 16 | syl 14 |
. . . 4
|
| 18 | 1, 17 | mpan 424 |
. . 3
|
| 19 | 18 | com12 30 |
. 2
|
| 20 | 19 | adantl 277 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |