Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneqdifeqim | Unicode version |
Description: Two ways that and can "partition" (when and don't overlap and is a part of ). In classical logic, the second implication would be a biconditional. (Contributed by Jim Kingdon, 4-Aug-2018.) |
Ref | Expression |
---|---|
uneqdifeqim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 3271 | . . . 4 | |
2 | eqtr 2188 | . . . . . 6 | |
3 | 2 | eqcomd 2176 | . . . . 5 |
4 | difeq1 3238 | . . . . . 6 | |
5 | difun2 3494 | . . . . . 6 | |
6 | eqtr 2188 | . . . . . . 7 | |
7 | incom 3319 | . . . . . . . . . 10 | |
8 | 7 | eqeq1i 2178 | . . . . . . . . 9 |
9 | disj3 3467 | . . . . . . . . 9 | |
10 | 8, 9 | bitri 183 | . . . . . . . 8 |
11 | eqtr 2188 | . . . . . . . . . 10 | |
12 | 11 | expcom 115 | . . . . . . . . 9 |
13 | 12 | eqcoms 2173 | . . . . . . . 8 |
14 | 10, 13 | sylbi 120 | . . . . . . 7 |
15 | 6, 14 | syl5com 29 | . . . . . 6 |
16 | 4, 5, 15 | sylancl 411 | . . . . 5 |
17 | 3, 16 | syl 14 | . . . 4 |
18 | 1, 17 | mpan 422 | . . 3 |
19 | 18 | com12 30 | . 2 |
20 | 19 | adantl 275 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 cdif 3118 cun 3119 cin 3120 wss 3121 c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |