| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > uneqdifeqim | Unicode version | ||
| Description: Two ways that  | 
| Ref | Expression | 
|---|---|
| uneqdifeqim | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uncom 3307 | 
. . . 4
 | |
| 2 | eqtr 2214 | 
. . . . . 6
 | |
| 3 | 2 | eqcomd 2202 | 
. . . . 5
 | 
| 4 | difeq1 3274 | 
. . . . . 6
 | |
| 5 | difun2 3530 | 
. . . . . 6
 | |
| 6 | eqtr 2214 | 
. . . . . . 7
 | |
| 7 | incom 3355 | 
. . . . . . . . . 10
 | |
| 8 | 7 | eqeq1i 2204 | 
. . . . . . . . 9
 | 
| 9 | disj3 3503 | 
. . . . . . . . 9
 | |
| 10 | 8, 9 | bitri 184 | 
. . . . . . . 8
 | 
| 11 | eqtr 2214 | 
. . . . . . . . . 10
 | |
| 12 | 11 | expcom 116 | 
. . . . . . . . 9
 | 
| 13 | 12 | eqcoms 2199 | 
. . . . . . . 8
 | 
| 14 | 10, 13 | sylbi 121 | 
. . . . . . 7
 | 
| 15 | 6, 14 | syl5com 29 | 
. . . . . 6
 | 
| 16 | 4, 5, 15 | sylancl 413 | 
. . . . 5
 | 
| 17 | 3, 16 | syl 14 | 
. . . 4
 | 
| 18 | 1, 17 | mpan 424 | 
. . 3
 | 
| 19 | 18 | com12 30 | 
. 2
 | 
| 20 | 19 | adantl 277 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |