Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneqdifeqim | Unicode version |
Description: Two ways that and can "partition" (when and don't overlap and is a part of ). In classical logic, the second implication would be a biconditional. (Contributed by Jim Kingdon, 4-Aug-2018.) |
Ref | Expression |
---|---|
uneqdifeqim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 3266 | . . . 4 | |
2 | eqtr 2183 | . . . . . 6 | |
3 | 2 | eqcomd 2171 | . . . . 5 |
4 | difeq1 3233 | . . . . . 6 | |
5 | difun2 3488 | . . . . . 6 | |
6 | eqtr 2183 | . . . . . . 7 | |
7 | incom 3314 | . . . . . . . . . 10 | |
8 | 7 | eqeq1i 2173 | . . . . . . . . 9 |
9 | disj3 3461 | . . . . . . . . 9 | |
10 | 8, 9 | bitri 183 | . . . . . . . 8 |
11 | eqtr 2183 | . . . . . . . . . 10 | |
12 | 11 | expcom 115 | . . . . . . . . 9 |
13 | 12 | eqcoms 2168 | . . . . . . . 8 |
14 | 10, 13 | sylbi 120 | . . . . . . 7 |
15 | 6, 14 | syl5com 29 | . . . . . 6 |
16 | 4, 5, 15 | sylancl 410 | . . . . 5 |
17 | 3, 16 | syl 14 | . . . 4 |
18 | 1, 17 | mpan 421 | . . 3 |
19 | 18 | com12 30 | . 2 |
20 | 19 | adantl 275 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 cdif 3113 cun 3114 cin 3115 wss 3116 c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |