ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlsub Unicode version

Theorem addlsub 7902
Description: Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
addlsub.a  |-  ( ph  ->  A  e.  CC )
addlsub.b  |-  ( ph  ->  B  e.  CC )
addlsub.c  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
addlsub  |-  ( ph  ->  ( ( A  +  B )  =  C  <-> 
A  =  ( C  -  B ) ) )

Proof of Theorem addlsub
StepHypRef Expression
1 oveq1 5673 . . 3  |-  ( ( A  +  B )  =  C  ->  (
( A  +  B
)  -  B )  =  ( C  -  B ) )
2 addlsub.a . . . . 5  |-  ( ph  ->  A  e.  CC )
3 addlsub.b . . . . 5  |-  ( ph  ->  B  e.  CC )
42, 3pncand 7848 . . . 4  |-  ( ph  ->  ( ( A  +  B )  -  B
)  =  A )
5 eqtr2 2107 . . . . . 6  |-  ( ( ( ( A  +  B )  -  B
)  =  ( C  -  B )  /\  ( ( A  +  B )  -  B
)  =  A )  ->  ( C  -  B )  =  A )
65eqcomd 2094 . . . . 5  |-  ( ( ( ( A  +  B )  -  B
)  =  ( C  -  B )  /\  ( ( A  +  B )  -  B
)  =  A )  ->  A  =  ( C  -  B ) )
76a1i 9 . . . 4  |-  ( ph  ->  ( ( ( ( A  +  B )  -  B )  =  ( C  -  B
)  /\  ( ( A  +  B )  -  B )  =  A )  ->  A  =  ( C  -  B
) ) )
84, 7mpan2d 420 . . 3  |-  ( ph  ->  ( ( ( A  +  B )  -  B )  =  ( C  -  B )  ->  A  =  ( C  -  B ) ) )
91, 8syl5 32 . 2  |-  ( ph  ->  ( ( A  +  B )  =  C  ->  A  =  ( C  -  B ) ) )
10 oveq1 5673 . . 3  |-  ( A  =  ( C  -  B )  ->  ( A  +  B )  =  ( ( C  -  B )  +  B ) )
11 addlsub.c . . . . 5  |-  ( ph  ->  C  e.  CC )
1211, 3npcand 7851 . . . 4  |-  ( ph  ->  ( ( C  -  B )  +  B
)  =  C )
13 eqtr 2106 . . . . 5  |-  ( ( ( A  +  B
)  =  ( ( C  -  B )  +  B )  /\  ( ( C  -  B )  +  B
)  =  C )  ->  ( A  +  B )  =  C )
1413a1i 9 . . . 4  |-  ( ph  ->  ( ( ( A  +  B )  =  ( ( C  -  B )  +  B
)  /\  ( ( C  -  B )  +  B )  =  C )  ->  ( A  +  B )  =  C ) )
1512, 14mpan2d 420 . . 3  |-  ( ph  ->  ( ( A  +  B )  =  ( ( C  -  B
)  +  B )  ->  ( A  +  B )  =  C ) )
1610, 15syl5 32 . 2  |-  ( ph  ->  ( A  =  ( C  -  B )  ->  ( A  +  B )  =  C ) )
179, 16impbid 128 1  |-  ( ph  ->  ( ( A  +  B )  =  C  <-> 
A  =  ( C  -  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1290    e. wcel 1439  (class class class)co 5666   CCcc 7402    + caddc 7407    - cmin 7707
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-setind 4366  ax-resscn 7491  ax-1cn 7492  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-addcom 7499  ax-addass 7501  ax-distr 7503  ax-i2m1 7504  ax-0id 7507  ax-rnegex 7508  ax-cnre 7510
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-iota 4993  df-fun 5030  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-sub 7709
This theorem is referenced by:  addrsub  7903  subexsub  7904  nn0ob  11240  oddennn  11537
  Copyright terms: Public domain W3C validator