ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlsub Unicode version

Theorem addlsub 8516
Description: Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
addlsub.a  |-  ( ph  ->  A  e.  CC )
addlsub.b  |-  ( ph  ->  B  e.  CC )
addlsub.c  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
addlsub  |-  ( ph  ->  ( ( A  +  B )  =  C  <-> 
A  =  ( C  -  B ) ) )

Proof of Theorem addlsub
StepHypRef Expression
1 oveq1 6008 . . 3  |-  ( ( A  +  B )  =  C  ->  (
( A  +  B
)  -  B )  =  ( C  -  B ) )
2 addlsub.a . . . . 5  |-  ( ph  ->  A  e.  CC )
3 addlsub.b . . . . 5  |-  ( ph  ->  B  e.  CC )
42, 3pncand 8458 . . . 4  |-  ( ph  ->  ( ( A  +  B )  -  B
)  =  A )
5 eqtr2 2248 . . . . . 6  |-  ( ( ( ( A  +  B )  -  B
)  =  ( C  -  B )  /\  ( ( A  +  B )  -  B
)  =  A )  ->  ( C  -  B )  =  A )
65eqcomd 2235 . . . . 5  |-  ( ( ( ( A  +  B )  -  B
)  =  ( C  -  B )  /\  ( ( A  +  B )  -  B
)  =  A )  ->  A  =  ( C  -  B ) )
76a1i 9 . . . 4  |-  ( ph  ->  ( ( ( ( A  +  B )  -  B )  =  ( C  -  B
)  /\  ( ( A  +  B )  -  B )  =  A )  ->  A  =  ( C  -  B
) ) )
84, 7mpan2d 428 . . 3  |-  ( ph  ->  ( ( ( A  +  B )  -  B )  =  ( C  -  B )  ->  A  =  ( C  -  B ) ) )
91, 8syl5 32 . 2  |-  ( ph  ->  ( ( A  +  B )  =  C  ->  A  =  ( C  -  B ) ) )
10 oveq1 6008 . . 3  |-  ( A  =  ( C  -  B )  ->  ( A  +  B )  =  ( ( C  -  B )  +  B ) )
11 addlsub.c . . . . 5  |-  ( ph  ->  C  e.  CC )
1211, 3npcand 8461 . . . 4  |-  ( ph  ->  ( ( C  -  B )  +  B
)  =  C )
13 eqtr 2247 . . . . 5  |-  ( ( ( A  +  B
)  =  ( ( C  -  B )  +  B )  /\  ( ( C  -  B )  +  B
)  =  C )  ->  ( A  +  B )  =  C )
1413a1i 9 . . . 4  |-  ( ph  ->  ( ( ( A  +  B )  =  ( ( C  -  B )  +  B
)  /\  ( ( C  -  B )  +  B )  =  C )  ->  ( A  +  B )  =  C ) )
1512, 14mpan2d 428 . . 3  |-  ( ph  ->  ( ( A  +  B )  =  ( ( C  -  B
)  +  B )  ->  ( A  +  B )  =  C ) )
1610, 15syl5 32 . 2  |-  ( ph  ->  ( A  =  ( C  -  B )  ->  ( A  +  B )  =  C ) )
179, 16impbid 129 1  |-  ( ph  ->  ( ( A  +  B )  =  C  <-> 
A  =  ( C  -  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997    + caddc 8002    - cmin 8317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319
This theorem is referenced by:  addrsub  8517  subexsub  8518  nn0ob  12419  oddennn  12963
  Copyright terms: Public domain W3C validator