Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addlsub | Unicode version |
Description: Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.) |
Ref | Expression |
---|---|
addlsub.a | |
addlsub.b | |
addlsub.c |
Ref | Expression |
---|---|
addlsub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5860 | . . 3 | |
2 | addlsub.a | . . . . 5 | |
3 | addlsub.b | . . . . 5 | |
4 | 2, 3 | pncand 8231 | . . . 4 |
5 | eqtr2 2189 | . . . . . 6 | |
6 | 5 | eqcomd 2176 | . . . . 5 |
7 | 6 | a1i 9 | . . . 4 |
8 | 4, 7 | mpan2d 426 | . . 3 |
9 | 1, 8 | syl5 32 | . 2 |
10 | oveq1 5860 | . . 3 | |
11 | addlsub.c | . . . . 5 | |
12 | 11, 3 | npcand 8234 | . . . 4 |
13 | eqtr 2188 | . . . . 5 | |
14 | 13 | a1i 9 | . . . 4 |
15 | 12, 14 | mpan2d 426 | . . 3 |
16 | 10, 15 | syl5 32 | . 2 |
17 | 9, 16 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 caddc 7777 cmin 8090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 |
This theorem is referenced by: addrsub 8290 subexsub 8291 nn0ob 11867 oddennn 12347 |
Copyright terms: Public domain | W3C validator |