Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addlsub | Unicode version |
Description: Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.) |
Ref | Expression |
---|---|
addlsub.a | |
addlsub.b | |
addlsub.c |
Ref | Expression |
---|---|
addlsub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5872 | . . 3 | |
2 | addlsub.a | . . . . 5 | |
3 | addlsub.b | . . . . 5 | |
4 | 2, 3 | pncand 8243 | . . . 4 |
5 | eqtr2 2194 | . . . . . 6 | |
6 | 5 | eqcomd 2181 | . . . . 5 |
7 | 6 | a1i 9 | . . . 4 |
8 | 4, 7 | mpan2d 428 | . . 3 |
9 | 1, 8 | syl5 32 | . 2 |
10 | oveq1 5872 | . . 3 | |
11 | addlsub.c | . . . . 5 | |
12 | 11, 3 | npcand 8246 | . . . 4 |
13 | eqtr 2193 | . . . . 5 | |
14 | 13 | a1i 9 | . . . 4 |
15 | 12, 14 | mpan2d 428 | . . 3 |
16 | 10, 15 | syl5 32 | . 2 |
17 | 9, 16 | impbid 129 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 (class class class)co 5865 cc 7784 caddc 7789 cmin 8102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 ax-resscn 7878 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-sub 8104 |
This theorem is referenced by: addrsub 8302 subexsub 8303 nn0ob 11880 oddennn 12360 |
Copyright terms: Public domain | W3C validator |