ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlsub Unicode version

Theorem addlsub 8301
Description: Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
addlsub.a  |-  ( ph  ->  A  e.  CC )
addlsub.b  |-  ( ph  ->  B  e.  CC )
addlsub.c  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
addlsub  |-  ( ph  ->  ( ( A  +  B )  =  C  <-> 
A  =  ( C  -  B ) ) )

Proof of Theorem addlsub
StepHypRef Expression
1 oveq1 5872 . . 3  |-  ( ( A  +  B )  =  C  ->  (
( A  +  B
)  -  B )  =  ( C  -  B ) )
2 addlsub.a . . . . 5  |-  ( ph  ->  A  e.  CC )
3 addlsub.b . . . . 5  |-  ( ph  ->  B  e.  CC )
42, 3pncand 8243 . . . 4  |-  ( ph  ->  ( ( A  +  B )  -  B
)  =  A )
5 eqtr2 2194 . . . . . 6  |-  ( ( ( ( A  +  B )  -  B
)  =  ( C  -  B )  /\  ( ( A  +  B )  -  B
)  =  A )  ->  ( C  -  B )  =  A )
65eqcomd 2181 . . . . 5  |-  ( ( ( ( A  +  B )  -  B
)  =  ( C  -  B )  /\  ( ( A  +  B )  -  B
)  =  A )  ->  A  =  ( C  -  B ) )
76a1i 9 . . . 4  |-  ( ph  ->  ( ( ( ( A  +  B )  -  B )  =  ( C  -  B
)  /\  ( ( A  +  B )  -  B )  =  A )  ->  A  =  ( C  -  B
) ) )
84, 7mpan2d 428 . . 3  |-  ( ph  ->  ( ( ( A  +  B )  -  B )  =  ( C  -  B )  ->  A  =  ( C  -  B ) ) )
91, 8syl5 32 . 2  |-  ( ph  ->  ( ( A  +  B )  =  C  ->  A  =  ( C  -  B ) ) )
10 oveq1 5872 . . 3  |-  ( A  =  ( C  -  B )  ->  ( A  +  B )  =  ( ( C  -  B )  +  B ) )
11 addlsub.c . . . . 5  |-  ( ph  ->  C  e.  CC )
1211, 3npcand 8246 . . . 4  |-  ( ph  ->  ( ( C  -  B )  +  B
)  =  C )
13 eqtr 2193 . . . . 5  |-  ( ( ( A  +  B
)  =  ( ( C  -  B )  +  B )  /\  ( ( C  -  B )  +  B
)  =  C )  ->  ( A  +  B )  =  C )
1413a1i 9 . . . 4  |-  ( ph  ->  ( ( ( A  +  B )  =  ( ( C  -  B )  +  B
)  /\  ( ( C  -  B )  +  B )  =  C )  ->  ( A  +  B )  =  C ) )
1512, 14mpan2d 428 . . 3  |-  ( ph  ->  ( ( A  +  B )  =  ( ( C  -  B
)  +  B )  ->  ( A  +  B )  =  C ) )
1610, 15syl5 32 . 2  |-  ( ph  ->  ( A  =  ( C  -  B )  ->  ( A  +  B )  =  C ) )
179, 16impbid 129 1  |-  ( ph  ->  ( ( A  +  B )  =  C  <-> 
A  =  ( C  -  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146  (class class class)co 5865   CCcc 7784    + caddc 7789    - cmin 8102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-setind 4530  ax-resscn 7878  ax-1cn 7879  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-sub 8104
This theorem is referenced by:  addrsub  8302  subexsub  8303  nn0ob  11880  oddennn  12360
  Copyright terms: Public domain W3C validator