ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1odm Unicode version

Theorem f1odm 5467
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1odm  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )

Proof of Theorem f1odm
StepHypRef Expression
1 f1ofn 5464 . 2  |-  ( F : A -1-1-onto-> B  ->  F  Fn  A )
2 fndm 5317 . 2  |-  ( F  Fn  A  ->  dom  F  =  A )
31, 2syl 14 1  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   dom cdm 4628    Fn wfn 5213   -1-1-onto->wf1o 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5221  df-f 5222  df-f1 5223  df-f1o 5225
This theorem is referenced by:  f1imacnv  5480  f1opw2  6079  xpcomco  6828  mapen  6848  ssenen  6853  phplem4  6857  phplem4on  6869  dif1en  6881  fiintim  6930  caseinl  7092  caseinr  7093  ctssdccl  7112  fihasheqf1oi  10769  hashfacen  10818  fisumss  11402
  Copyright terms: Public domain W3C validator