ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1odm Unicode version

Theorem f1odm 5511
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1odm  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )

Proof of Theorem f1odm
StepHypRef Expression
1 f1ofn 5508 . 2  |-  ( F : A -1-1-onto-> B  ->  F  Fn  A )
2 fndm 5358 . 2  |-  ( F  Fn  A  ->  dom  F  =  A )
31, 2syl 14 1  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   dom cdm 4664    Fn wfn 5254   -1-1-onto->wf1o 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5262  df-f 5263  df-f1 5264  df-f1o 5266
This theorem is referenced by:  f1imacnv  5524  f1opw2  6133  xpcomco  6894  mapen  6916  ssenen  6921  phplem4  6925  phplem4on  6937  dif1en  6949  fiintim  7001  caseinl  7166  caseinr  7167  ctssdccl  7186  fihasheqf1oi  10896  hashfacen  10945  fisumss  11574
  Copyright terms: Public domain W3C validator