ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1odm Unicode version

Theorem f1odm 5575
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1odm  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )

Proof of Theorem f1odm
StepHypRef Expression
1 f1ofn 5572 . 2  |-  ( F : A -1-1-onto-> B  ->  F  Fn  A )
2 fndm 5419 . 2  |-  ( F  Fn  A  ->  dom  F  =  A )
31, 2syl 14 1  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   dom cdm 4718    Fn wfn 5312   -1-1-onto->wf1o 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5320  df-f 5321  df-f1 5322  df-f1o 5324
This theorem is referenced by:  f1imacnv  5588  f1opw2  6210  en2  6971  xpcomco  6981  mapen  7003  ssenen  7008  phplem4  7012  phplem4on  7025  dif1en  7037  fiintim  7089  caseinl  7254  caseinr  7255  ctssdccl  7274  fihasheqf1oi  11004  hashfacen  11053  fisumss  11898
  Copyright terms: Public domain W3C validator