ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1odm Unicode version

Theorem f1odm 5477
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1odm  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )

Proof of Theorem f1odm
StepHypRef Expression
1 f1ofn 5474 . 2  |-  ( F : A -1-1-onto-> B  ->  F  Fn  A )
2 fndm 5327 . 2  |-  ( F  Fn  A  ->  dom  F  =  A )
31, 2syl 14 1  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363   dom cdm 4638    Fn wfn 5223   -1-1-onto->wf1o 5227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5231  df-f 5232  df-f1 5233  df-f1o 5235
This theorem is referenced by:  f1imacnv  5490  f1opw2  6091  xpcomco  6840  mapen  6860  ssenen  6865  phplem4  6869  phplem4on  6881  dif1en  6893  fiintim  6942  caseinl  7104  caseinr  7105  ctssdccl  7124  fihasheqf1oi  10781  hashfacen  10830  fisumss  11414
  Copyright terms: Public domain W3C validator