ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinr Unicode version

Theorem caseinr 7069
Description: Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.)
Hypotheses
Ref Expression
caseinr.f  |-  ( ph  ->  Fun  F )
caseinr.g  |-  ( ph  ->  G  Fn  B )
caseinr.a  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
caseinr  |-  ( ph  ->  (case ( F ,  G ) `  (inr `  A ) )  =  ( G `  A
) )

Proof of Theorem caseinr
StepHypRef Expression
1 df-case 7061 . . . 4  |- case ( F ,  G )  =  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr )
)
21fveq1i 5497 . . 3  |-  (case ( F ,  G ) `
 (inr `  A
) )  =  ( ( ( F  o.  `'inl )  u.  ( G  o.  `'inr )
) `  (inr `  A
) )
3 caseinr.f . . . . . 6  |-  ( ph  ->  Fun  F )
4 djulf1o 7035 . . . . . . . 8  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
5 f1ocnv 5455 . . . . . . . 8  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  ->  `'inl : ( { (/) }  X.  _V ) -1-1-onto-> _V )
64, 5ax-mp 5 . . . . . . 7  |-  `'inl :
( { (/) }  X.  _V ) -1-1-onto-> _V
7 f1ofun 5444 . . . . . . 7  |-  ( `'inl
: ( { (/) }  X.  _V ) -1-1-onto-> _V  ->  Fun  `'inl )
86, 7ax-mp 5 . . . . . 6  |-  Fun  `'inl
9 funco 5238 . . . . . 6  |-  ( ( Fun  F  /\  Fun  `'inl )  ->  Fun  ( F  o.  `'inl ) )
103, 8, 9sylancl 411 . . . . 5  |-  ( ph  ->  Fun  ( F  o.  `'inl ) )
11 dmco 5119 . . . . . . 7  |-  dom  ( F  o.  `'inl )  =  ( `' `'inl " dom  F )
12 imacnvcnv 5075 . . . . . . 7  |-  ( `' `'inl " dom  F )  =  (inl " dom  F )
1311, 12eqtri 2191 . . . . . 6  |-  dom  ( F  o.  `'inl )  =  (inl " dom  F
)
1413a1i 9 . . . . 5  |-  ( ph  ->  dom  ( F  o.  `'inl )  =  (inl " dom  F ) )
15 df-fn 5201 . . . . 5  |-  ( ( F  o.  `'inl )  Fn  (inl " dom  F
)  <->  ( Fun  ( F  o.  `'inl )  /\  dom  ( F  o.  `'inl )  =  (inl " dom  F ) ) )
1610, 14, 15sylanbrc 415 . . . 4  |-  ( ph  ->  ( F  o.  `'inl )  Fn  (inl " dom  F ) )
17 caseinr.g . . . . . . 7  |-  ( ph  ->  G  Fn  B )
18 fnfun 5295 . . . . . . 7  |-  ( G  Fn  B  ->  Fun  G )
1917, 18syl 14 . . . . . 6  |-  ( ph  ->  Fun  G )
20 djurf1o 7036 . . . . . . . 8  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
21 f1ocnv 5455 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  ->  `'inr :
( { 1o }  X.  _V ) -1-1-onto-> _V )
2220, 21ax-mp 5 . . . . . . 7  |-  `'inr :
( { 1o }  X.  _V ) -1-1-onto-> _V
23 f1ofun 5444 . . . . . . 7  |-  ( `'inr
: ( { 1o }  X.  _V ) -1-1-onto-> _V  ->  Fun  `'inr )
2422, 23ax-mp 5 . . . . . 6  |-  Fun  `'inr
25 funco 5238 . . . . . 6  |-  ( ( Fun  G  /\  Fun  `'inr )  ->  Fun  ( G  o.  `'inr ) )
2619, 24, 25sylancl 411 . . . . 5  |-  ( ph  ->  Fun  ( G  o.  `'inr ) )
27 dmco 5119 . . . . . 6  |-  dom  ( G  o.  `'inr )  =  ( `' `'inr " dom  G )
28 df-inr 7025 . . . . . . . . . . 11  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
2928funmpt2 5237 . . . . . . . . . 10  |-  Fun inr
30 funrel 5215 . . . . . . . . . 10  |-  ( Fun inr  ->  Rel inr )
3129, 30ax-mp 5 . . . . . . . . 9  |-  Rel inr
32 dfrel2 5061 . . . . . . . . 9  |-  ( Rel inr  <->  `' `'inr  = inr )
3331, 32mpbi 144 . . . . . . . 8  |-  `' `'inr  = inr
3433a1i 9 . . . . . . 7  |-  ( ph  ->  `' `'inr  = inr )
35 fndm 5297 . . . . . . . 8  |-  ( G  Fn  B  ->  dom  G  =  B )
3617, 35syl 14 . . . . . . 7  |-  ( ph  ->  dom  G  =  B )
3734, 36imaeq12d 4954 . . . . . 6  |-  ( ph  ->  ( `' `'inr " dom  G )  =  (inr " B ) )
3827, 37eqtrid 2215 . . . . 5  |-  ( ph  ->  dom  ( G  o.  `'inr )  =  (inr " B ) )
39 df-fn 5201 . . . . 5  |-  ( ( G  o.  `'inr )  Fn  (inr " B )  <-> 
( Fun  ( G  o.  `'inr )  /\  dom  ( G  o.  `'inr )  =  (inr " B ) ) )
4026, 38, 39sylanbrc 415 . . . 4  |-  ( ph  ->  ( G  o.  `'inr )  Fn  (inr " B
) )
41 djuin 7041 . . . . 5  |-  ( (inl " dom  F )  i^i  (inr " B ) )  =  (/)
4241a1i 9 . . . 4  |-  ( ph  ->  ( (inl " dom  F )  i^i  (inr " B ) )  =  (/) )
43 caseinr.a . . . . . . . 8  |-  ( ph  ->  A  e.  B )
4443elexd 2743 . . . . . . 7  |-  ( ph  ->  A  e.  _V )
45 f1odm 5446 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  ->  dom inr  =  _V )
4620, 45ax-mp 5 . . . . . . 7  |-  dom inr  =  _V
4744, 46eleqtrrdi 2264 . . . . . 6  |-  ( ph  ->  A  e.  dom inr )
4847, 29jctil 310 . . . . 5  |-  ( ph  ->  ( Fun inr  /\  A  e. 
dom inr ) )
49 funfvima 5727 . . . . 5  |-  ( ( Fun inr  /\  A  e.  dom inr )  ->  ( A  e.  B  ->  (inr `  A )  e.  (inr " B ) ) )
5048, 43, 49sylc 62 . . . 4  |-  ( ph  ->  (inr `  A )  e.  (inr " B ) )
51 fvun2 5563 . . . 4  |-  ( ( ( F  o.  `'inl )  Fn  (inl " dom  F )  /\  ( G  o.  `'inr )  Fn  (inr " B )  /\  ( ( (inl " dom  F )  i^i  (inr " B ) )  =  (/)  /\  (inr `  A )  e.  (inr " B ) ) )  ->  ( ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) `  (inr `  A ) )  =  ( ( G  o.  `'inr ) `  (inr `  A ) ) )
5216, 40, 42, 50, 51syl112anc 1237 . . 3  |-  ( ph  ->  ( ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) `  (inr `  A ) )  =  ( ( G  o.  `'inr ) `  (inr `  A ) ) )
532, 52eqtrid 2215 . 2  |-  ( ph  ->  (case ( F ,  G ) `  (inr `  A ) )  =  ( ( G  o.  `'inr ) `  (inr `  A ) ) )
54 f1ofn 5443 . . . 4  |-  ( `'inr
: ( { 1o }  X.  _V ) -1-1-onto-> _V  ->  `'inr 
Fn  ( { 1o }  X.  _V ) )
5522, 54ax-mp 5 . . 3  |-  `'inr  Fn  ( { 1o }  X.  _V )
56 f1of 5442 . . . . . 6  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V --> ( { 1o }  X.  _V ) )
5720, 56ax-mp 5 . . . . 5  |- inr : _V --> ( { 1o }  X.  _V )
5857a1i 9 . . . 4  |-  ( ph  -> inr : _V --> ( { 1o }  X.  _V ) )
5958, 44ffvelrnd 5632 . . 3  |-  ( ph  ->  (inr `  A )  e.  ( { 1o }  X.  _V ) )
60 fvco2 5565 . . 3  |-  ( ( `'inr  Fn  ( { 1o }  X.  _V )  /\  (inr `  A )  e.  ( { 1o }  X.  _V ) )  -> 
( ( G  o.  `'inr ) `  (inr `  A ) )  =  ( G `  ( `'inr `  (inr `  A
) ) ) )
6155, 59, 60sylancr 412 . 2  |-  ( ph  ->  ( ( G  o.  `'inr ) `  (inr `  A ) )  =  ( G `  ( `'inr `  (inr `  A
) ) ) )
62 f1ocnvfv1 5756 . . . 4  |-  ( (inr : _V -1-1-onto-> ( { 1o }  X.  _V )  /\  A  e.  _V )  ->  ( `'inr `  (inr `  A
) )  =  A )
6320, 44, 62sylancr 412 . . 3  |-  ( ph  ->  ( `'inr `  (inr `  A ) )  =  A )
6463fveq2d 5500 . 2  |-  ( ph  ->  ( G `  ( `'inr `  (inr `  A
) ) )  =  ( G `  A
) )
6553, 61, 643eqtrd 2207 1  |-  ( ph  ->  (case ( F ,  G ) `  (inr `  A ) )  =  ( G `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   _Vcvv 2730    u. cun 3119    i^i cin 3120   (/)c0 3414   {csn 3583   <.cop 3586    X. cxp 4609   `'ccnv 4610   dom cdm 4611   "cima 4614    o. ccom 4615   Rel wrel 4616   Fun wfun 5192    Fn wfn 5193   -->wf 5194   -1-1-onto->wf1o 5197   ` cfv 5198   1oc1o 6388  inlcinl 7022  inrcinr 7023  casecdjucase 7060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-inl 7024  df-inr 7025  df-case 7061
This theorem is referenced by:  omp1eomlem  7071
  Copyright terms: Public domain W3C validator