Proof of Theorem caseinr
| Step | Hyp | Ref
| Expression |
| 1 | | df-case 7159 |
. . . 4
case     inl

inr  |
| 2 | 1 | fveq1i 5562 |
. . 3
case     inr      inl

inr   inr    |
| 3 | | caseinr.f |
. . . . . 6
   |
| 4 | | djulf1o 7133 |
. . . . . . . 8
inl        |
| 5 | | f1ocnv 5520 |
. . . . . . . 8
inl       inl         |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . 7
inl        |
| 7 | | f1ofun 5509 |
. . . . . . 7
 inl       inl |
| 8 | 6, 7 | ax-mp 5 |
. . . . . 6
inl |
| 9 | | funco 5299 |
. . . . . 6
  inl
 inl  |
| 10 | 3, 8, 9 | sylancl 413 |
. . . . 5
  inl  |
| 11 | | dmco 5179 |
. . . . . . 7

inl   inl   |
| 12 | | imacnvcnv 5135 |
. . . . . . 7
  inl  inl   |
| 13 | 11, 12 | eqtri 2217 |
. . . . . 6

inl inl   |
| 14 | 13 | a1i 9 |
. . . . 5
  inl
inl    |
| 15 | | df-fn 5262 |
. . . . 5
  inl inl   
inl  inl
inl     |
| 16 | 10, 14, 15 | sylanbrc 417 |
. . . 4
  inl
inl    |
| 17 | | caseinr.g |
. . . . . . 7
   |
| 18 | | fnfun 5356 |
. . . . . . 7
   |
| 19 | 17, 18 | syl 14 |
. . . . . 6
   |
| 20 | | djurf1o 7134 |
. . . . . . . 8
inr        |
| 21 | | f1ocnv 5520 |
. . . . . . . 8
inr      
inr         |
| 22 | 20, 21 | ax-mp 5 |
. . . . . . 7
inr        |
| 23 | | f1ofun 5509 |
. . . . . . 7
 inr       inr |
| 24 | 22, 23 | ax-mp 5 |
. . . . . 6
inr |
| 25 | | funco 5299 |
. . . . . 6
  inr
 inr  |
| 26 | 19, 24, 25 | sylancl 413 |
. . . . 5
  inr  |
| 27 | | dmco 5179 |
. . . . . 6

inr   inr   |
| 28 | | df-inr 7123 |
. . . . . . . . . . 11
inr   
   |
| 29 | 28 | funmpt2 5298 |
. . . . . . . . . 10
inr |
| 30 | | funrel 5276 |
. . . . . . . . . 10
 inr inr |
| 31 | 29, 30 | ax-mp 5 |
. . . . . . . . 9
inr |
| 32 | | dfrel2 5121 |
. . . . . . . . 9
 inr  inr inr |
| 33 | 31, 32 | mpbi 145 |
. . . . . . . 8
 inr inr |
| 34 | 33 | a1i 9 |
. . . . . . 7
  inr inr |
| 35 | | fndm 5358 |
. . . . . . . 8
   |
| 36 | 17, 35 | syl 14 |
. . . . . . 7
   |
| 37 | 34, 36 | imaeq12d 5011 |
. . . . . 6
   inr  inr    |
| 38 | 27, 37 | eqtrid 2241 |
. . . . 5
  inr
inr    |
| 39 | | df-fn 5262 |
. . . . 5
  inr inr  
 inr

inr inr     |
| 40 | 26, 38, 39 | sylanbrc 417 |
. . . 4
  inr
inr    |
| 41 | | djuin 7139 |
. . . . 5
 inl  inr    |
| 42 | 41 | a1i 9 |
. . . 4
  inl  inr     |
| 43 | | caseinr.a |
. . . . . . . 8
   |
| 44 | 43 | elexd 2776 |
. . . . . . 7
   |
| 45 | | f1odm 5511 |
. . . . . . . 8
inr      
inr   |
| 46 | 20, 45 | ax-mp 5 |
. . . . . . 7
inr  |
| 47 | 44, 46 | eleqtrrdi 2290 |
. . . . . 6
 inr |
| 48 | 47, 29 | jctil 312 |
. . . . 5
  inr
inr  |
| 49 | | funfvima 5797 |
. . . . 5
  inr
inr

inr  inr     |
| 50 | 48, 43, 49 | sylc 62 |
. . . 4
 inr  inr    |
| 51 | | fvun2 5631 |
. . . 4
   inl
inl   inr inr    inl  inr   inr  inr       inl  inr   inr     inr  inr     |
| 52 | 16, 40, 42, 50, 51 | syl112anc 1253 |
. . 3
    inl  inr   inr     inr  inr     |
| 53 | 2, 52 | eqtrid 2241 |
. 2
 case     inr     inr  inr     |
| 54 | | f1ofn 5508 |
. . . 4
 inr       inr       |
| 55 | 22, 54 | ax-mp 5 |
. . 3
inr      |
| 56 | | f1of 5507 |
. . . . . 6
inr      
inr         |
| 57 | 20, 56 | ax-mp 5 |
. . . . 5
inr        |
| 58 | 57 | a1i 9 |
. . . 4
 inr         |
| 59 | 58, 44 | ffvelcdmd 5701 |
. . 3
 inr        |
| 60 | | fvco2 5633 |
. . 3
  inr     inr         inr  inr       inr inr      |
| 61 | 55, 59, 60 | sylancr 414 |
. 2
   inr  inr       inr inr      |
| 62 | | f1ocnvfv1 5827 |
. . . 4
 inr         inr inr     |
| 63 | 20, 44, 62 | sylancr 414 |
. . 3
  inr inr     |
| 64 | 63 | fveq2d 5565 |
. 2
     inr inr          |
| 65 | 53, 61, 64 | 3eqtrd 2233 |
1
 case     inr         |