ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinr Unicode version

Theorem caseinr 7196
Description: Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.)
Hypotheses
Ref Expression
caseinr.f  |-  ( ph  ->  Fun  F )
caseinr.g  |-  ( ph  ->  G  Fn  B )
caseinr.a  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
caseinr  |-  ( ph  ->  (case ( F ,  G ) `  (inr `  A ) )  =  ( G `  A
) )

Proof of Theorem caseinr
StepHypRef Expression
1 df-case 7188 . . . 4  |- case ( F ,  G )  =  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr )
)
21fveq1i 5579 . . 3  |-  (case ( F ,  G ) `
 (inr `  A
) )  =  ( ( ( F  o.  `'inl )  u.  ( G  o.  `'inr )
) `  (inr `  A
) )
3 caseinr.f . . . . . 6  |-  ( ph  ->  Fun  F )
4 djulf1o 7162 . . . . . . . 8  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
5 f1ocnv 5537 . . . . . . . 8  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  ->  `'inl : ( { (/) }  X.  _V ) -1-1-onto-> _V )
64, 5ax-mp 5 . . . . . . 7  |-  `'inl :
( { (/) }  X.  _V ) -1-1-onto-> _V
7 f1ofun 5526 . . . . . . 7  |-  ( `'inl
: ( { (/) }  X.  _V ) -1-1-onto-> _V  ->  Fun  `'inl )
86, 7ax-mp 5 . . . . . 6  |-  Fun  `'inl
9 funco 5312 . . . . . 6  |-  ( ( Fun  F  /\  Fun  `'inl )  ->  Fun  ( F  o.  `'inl ) )
103, 8, 9sylancl 413 . . . . 5  |-  ( ph  ->  Fun  ( F  o.  `'inl ) )
11 dmco 5192 . . . . . . 7  |-  dom  ( F  o.  `'inl )  =  ( `' `'inl " dom  F )
12 imacnvcnv 5148 . . . . . . 7  |-  ( `' `'inl " dom  F )  =  (inl " dom  F )
1311, 12eqtri 2226 . . . . . 6  |-  dom  ( F  o.  `'inl )  =  (inl " dom  F
)
1413a1i 9 . . . . 5  |-  ( ph  ->  dom  ( F  o.  `'inl )  =  (inl " dom  F ) )
15 df-fn 5275 . . . . 5  |-  ( ( F  o.  `'inl )  Fn  (inl " dom  F
)  <->  ( Fun  ( F  o.  `'inl )  /\  dom  ( F  o.  `'inl )  =  (inl " dom  F ) ) )
1610, 14, 15sylanbrc 417 . . . 4  |-  ( ph  ->  ( F  o.  `'inl )  Fn  (inl " dom  F ) )
17 caseinr.g . . . . . . 7  |-  ( ph  ->  G  Fn  B )
18 fnfun 5372 . . . . . . 7  |-  ( G  Fn  B  ->  Fun  G )
1917, 18syl 14 . . . . . 6  |-  ( ph  ->  Fun  G )
20 djurf1o 7163 . . . . . . . 8  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
21 f1ocnv 5537 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  ->  `'inr :
( { 1o }  X.  _V ) -1-1-onto-> _V )
2220, 21ax-mp 5 . . . . . . 7  |-  `'inr :
( { 1o }  X.  _V ) -1-1-onto-> _V
23 f1ofun 5526 . . . . . . 7  |-  ( `'inr
: ( { 1o }  X.  _V ) -1-1-onto-> _V  ->  Fun  `'inr )
2422, 23ax-mp 5 . . . . . 6  |-  Fun  `'inr
25 funco 5312 . . . . . 6  |-  ( ( Fun  G  /\  Fun  `'inr )  ->  Fun  ( G  o.  `'inr ) )
2619, 24, 25sylancl 413 . . . . 5  |-  ( ph  ->  Fun  ( G  o.  `'inr ) )
27 dmco 5192 . . . . . 6  |-  dom  ( G  o.  `'inr )  =  ( `' `'inr " dom  G )
28 df-inr 7152 . . . . . . . . . . 11  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
2928funmpt2 5311 . . . . . . . . . 10  |-  Fun inr
30 funrel 5289 . . . . . . . . . 10  |-  ( Fun inr  ->  Rel inr )
3129, 30ax-mp 5 . . . . . . . . 9  |-  Rel inr
32 dfrel2 5134 . . . . . . . . 9  |-  ( Rel inr  <->  `' `'inr  = inr )
3331, 32mpbi 145 . . . . . . . 8  |-  `' `'inr  = inr
3433a1i 9 . . . . . . 7  |-  ( ph  ->  `' `'inr  = inr )
35 fndm 5374 . . . . . . . 8  |-  ( G  Fn  B  ->  dom  G  =  B )
3617, 35syl 14 . . . . . . 7  |-  ( ph  ->  dom  G  =  B )
3734, 36imaeq12d 5024 . . . . . 6  |-  ( ph  ->  ( `' `'inr " dom  G )  =  (inr " B ) )
3827, 37eqtrid 2250 . . . . 5  |-  ( ph  ->  dom  ( G  o.  `'inr )  =  (inr " B ) )
39 df-fn 5275 . . . . 5  |-  ( ( G  o.  `'inr )  Fn  (inr " B )  <-> 
( Fun  ( G  o.  `'inr )  /\  dom  ( G  o.  `'inr )  =  (inr " B ) ) )
4026, 38, 39sylanbrc 417 . . . 4  |-  ( ph  ->  ( G  o.  `'inr )  Fn  (inr " B
) )
41 djuin 7168 . . . . 5  |-  ( (inl " dom  F )  i^i  (inr " B ) )  =  (/)
4241a1i 9 . . . 4  |-  ( ph  ->  ( (inl " dom  F )  i^i  (inr " B ) )  =  (/) )
43 caseinr.a . . . . . . . 8  |-  ( ph  ->  A  e.  B )
4443elexd 2785 . . . . . . 7  |-  ( ph  ->  A  e.  _V )
45 f1odm 5528 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  ->  dom inr  =  _V )
4620, 45ax-mp 5 . . . . . . 7  |-  dom inr  =  _V
4744, 46eleqtrrdi 2299 . . . . . 6  |-  ( ph  ->  A  e.  dom inr )
4847, 29jctil 312 . . . . 5  |-  ( ph  ->  ( Fun inr  /\  A  e. 
dom inr ) )
49 funfvima 5818 . . . . 5  |-  ( ( Fun inr  /\  A  e.  dom inr )  ->  ( A  e.  B  ->  (inr `  A )  e.  (inr " B ) ) )
5048, 43, 49sylc 62 . . . 4  |-  ( ph  ->  (inr `  A )  e.  (inr " B ) )
51 fvun2 5648 . . . 4  |-  ( ( ( F  o.  `'inl )  Fn  (inl " dom  F )  /\  ( G  o.  `'inr )  Fn  (inr " B )  /\  ( ( (inl " dom  F )  i^i  (inr " B ) )  =  (/)  /\  (inr `  A )  e.  (inr " B ) ) )  ->  ( ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) `  (inr `  A ) )  =  ( ( G  o.  `'inr ) `  (inr `  A ) ) )
5216, 40, 42, 50, 51syl112anc 1254 . . 3  |-  ( ph  ->  ( ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) `  (inr `  A ) )  =  ( ( G  o.  `'inr ) `  (inr `  A ) ) )
532, 52eqtrid 2250 . 2  |-  ( ph  ->  (case ( F ,  G ) `  (inr `  A ) )  =  ( ( G  o.  `'inr ) `  (inr `  A ) ) )
54 f1ofn 5525 . . . 4  |-  ( `'inr
: ( { 1o }  X.  _V ) -1-1-onto-> _V  ->  `'inr 
Fn  ( { 1o }  X.  _V ) )
5522, 54ax-mp 5 . . 3  |-  `'inr  Fn  ( { 1o }  X.  _V )
56 f1of 5524 . . . . . 6  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V --> ( { 1o }  X.  _V ) )
5720, 56ax-mp 5 . . . . 5  |- inr : _V --> ( { 1o }  X.  _V )
5857a1i 9 . . . 4  |-  ( ph  -> inr : _V --> ( { 1o }  X.  _V ) )
5958, 44ffvelcdmd 5718 . . 3  |-  ( ph  ->  (inr `  A )  e.  ( { 1o }  X.  _V ) )
60 fvco2 5650 . . 3  |-  ( ( `'inr  Fn  ( { 1o }  X.  _V )  /\  (inr `  A )  e.  ( { 1o }  X.  _V ) )  -> 
( ( G  o.  `'inr ) `  (inr `  A ) )  =  ( G `  ( `'inr `  (inr `  A
) ) ) )
6155, 59, 60sylancr 414 . 2  |-  ( ph  ->  ( ( G  o.  `'inr ) `  (inr `  A ) )  =  ( G `  ( `'inr `  (inr `  A
) ) ) )
62 f1ocnvfv1 5848 . . . 4  |-  ( (inr : _V -1-1-onto-> ( { 1o }  X.  _V )  /\  A  e.  _V )  ->  ( `'inr `  (inr `  A
) )  =  A )
6320, 44, 62sylancr 414 . . 3  |-  ( ph  ->  ( `'inr `  (inr `  A ) )  =  A )
6463fveq2d 5582 . 2  |-  ( ph  ->  ( G `  ( `'inr `  (inr `  A
) ) )  =  ( G `  A
) )
6553, 61, 643eqtrd 2242 1  |-  ( ph  ->  (case ( F ,  G ) `  (inr `  A ) )  =  ( G `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772    u. cun 3164    i^i cin 3165   (/)c0 3460   {csn 3633   <.cop 3636    X. cxp 4674   `'ccnv 4675   dom cdm 4676   "cima 4679    o. ccom 4680   Rel wrel 4681   Fun wfun 5266    Fn wfn 5267   -->wf 5268   -1-1-onto->wf1o 5271   ` cfv 5272   1oc1o 6497  inlcinl 7149  inrcinr 7150  casecdjucase 7187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-1st 6228  df-2nd 6229  df-1o 6504  df-inl 7151  df-inr 7152  df-case 7188
This theorem is referenced by:  omp1eomlem  7198
  Copyright terms: Public domain W3C validator