ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinr Unicode version

Theorem caseinr 7085
Description: Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.)
Hypotheses
Ref Expression
caseinr.f  |-  ( ph  ->  Fun  F )
caseinr.g  |-  ( ph  ->  G  Fn  B )
caseinr.a  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
caseinr  |-  ( ph  ->  (case ( F ,  G ) `  (inr `  A ) )  =  ( G `  A
) )

Proof of Theorem caseinr
StepHypRef Expression
1 df-case 7077 . . . 4  |- case ( F ,  G )  =  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr )
)
21fveq1i 5512 . . 3  |-  (case ( F ,  G ) `
 (inr `  A
) )  =  ( ( ( F  o.  `'inl )  u.  ( G  o.  `'inr )
) `  (inr `  A
) )
3 caseinr.f . . . . . 6  |-  ( ph  ->  Fun  F )
4 djulf1o 7051 . . . . . . . 8  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
5 f1ocnv 5470 . . . . . . . 8  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  ->  `'inl : ( { (/) }  X.  _V ) -1-1-onto-> _V )
64, 5ax-mp 5 . . . . . . 7  |-  `'inl :
( { (/) }  X.  _V ) -1-1-onto-> _V
7 f1ofun 5459 . . . . . . 7  |-  ( `'inl
: ( { (/) }  X.  _V ) -1-1-onto-> _V  ->  Fun  `'inl )
86, 7ax-mp 5 . . . . . 6  |-  Fun  `'inl
9 funco 5252 . . . . . 6  |-  ( ( Fun  F  /\  Fun  `'inl )  ->  Fun  ( F  o.  `'inl ) )
103, 8, 9sylancl 413 . . . . 5  |-  ( ph  ->  Fun  ( F  o.  `'inl ) )
11 dmco 5133 . . . . . . 7  |-  dom  ( F  o.  `'inl )  =  ( `' `'inl " dom  F )
12 imacnvcnv 5089 . . . . . . 7  |-  ( `' `'inl " dom  F )  =  (inl " dom  F )
1311, 12eqtri 2198 . . . . . 6  |-  dom  ( F  o.  `'inl )  =  (inl " dom  F
)
1413a1i 9 . . . . 5  |-  ( ph  ->  dom  ( F  o.  `'inl )  =  (inl " dom  F ) )
15 df-fn 5215 . . . . 5  |-  ( ( F  o.  `'inl )  Fn  (inl " dom  F
)  <->  ( Fun  ( F  o.  `'inl )  /\  dom  ( F  o.  `'inl )  =  (inl " dom  F ) ) )
1610, 14, 15sylanbrc 417 . . . 4  |-  ( ph  ->  ( F  o.  `'inl )  Fn  (inl " dom  F ) )
17 caseinr.g . . . . . . 7  |-  ( ph  ->  G  Fn  B )
18 fnfun 5309 . . . . . . 7  |-  ( G  Fn  B  ->  Fun  G )
1917, 18syl 14 . . . . . 6  |-  ( ph  ->  Fun  G )
20 djurf1o 7052 . . . . . . . 8  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
21 f1ocnv 5470 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  ->  `'inr :
( { 1o }  X.  _V ) -1-1-onto-> _V )
2220, 21ax-mp 5 . . . . . . 7  |-  `'inr :
( { 1o }  X.  _V ) -1-1-onto-> _V
23 f1ofun 5459 . . . . . . 7  |-  ( `'inr
: ( { 1o }  X.  _V ) -1-1-onto-> _V  ->  Fun  `'inr )
2422, 23ax-mp 5 . . . . . 6  |-  Fun  `'inr
25 funco 5252 . . . . . 6  |-  ( ( Fun  G  /\  Fun  `'inr )  ->  Fun  ( G  o.  `'inr ) )
2619, 24, 25sylancl 413 . . . . 5  |-  ( ph  ->  Fun  ( G  o.  `'inr ) )
27 dmco 5133 . . . . . 6  |-  dom  ( G  o.  `'inr )  =  ( `' `'inr " dom  G )
28 df-inr 7041 . . . . . . . . . . 11  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
2928funmpt2 5251 . . . . . . . . . 10  |-  Fun inr
30 funrel 5229 . . . . . . . . . 10  |-  ( Fun inr  ->  Rel inr )
3129, 30ax-mp 5 . . . . . . . . 9  |-  Rel inr
32 dfrel2 5075 . . . . . . . . 9  |-  ( Rel inr  <->  `' `'inr  = inr )
3331, 32mpbi 145 . . . . . . . 8  |-  `' `'inr  = inr
3433a1i 9 . . . . . . 7  |-  ( ph  ->  `' `'inr  = inr )
35 fndm 5311 . . . . . . . 8  |-  ( G  Fn  B  ->  dom  G  =  B )
3617, 35syl 14 . . . . . . 7  |-  ( ph  ->  dom  G  =  B )
3734, 36imaeq12d 4967 . . . . . 6  |-  ( ph  ->  ( `' `'inr " dom  G )  =  (inr " B ) )
3827, 37eqtrid 2222 . . . . 5  |-  ( ph  ->  dom  ( G  o.  `'inr )  =  (inr " B ) )
39 df-fn 5215 . . . . 5  |-  ( ( G  o.  `'inr )  Fn  (inr " B )  <-> 
( Fun  ( G  o.  `'inr )  /\  dom  ( G  o.  `'inr )  =  (inr " B ) ) )
4026, 38, 39sylanbrc 417 . . . 4  |-  ( ph  ->  ( G  o.  `'inr )  Fn  (inr " B
) )
41 djuin 7057 . . . . 5  |-  ( (inl " dom  F )  i^i  (inr " B ) )  =  (/)
4241a1i 9 . . . 4  |-  ( ph  ->  ( (inl " dom  F )  i^i  (inr " B ) )  =  (/) )
43 caseinr.a . . . . . . . 8  |-  ( ph  ->  A  e.  B )
4443elexd 2750 . . . . . . 7  |-  ( ph  ->  A  e.  _V )
45 f1odm 5461 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  ->  dom inr  =  _V )
4620, 45ax-mp 5 . . . . . . 7  |-  dom inr  =  _V
4744, 46eleqtrrdi 2271 . . . . . 6  |-  ( ph  ->  A  e.  dom inr )
4847, 29jctil 312 . . . . 5  |-  ( ph  ->  ( Fun inr  /\  A  e. 
dom inr ) )
49 funfvima 5743 . . . . 5  |-  ( ( Fun inr  /\  A  e.  dom inr )  ->  ( A  e.  B  ->  (inr `  A )  e.  (inr " B ) ) )
5048, 43, 49sylc 62 . . . 4  |-  ( ph  ->  (inr `  A )  e.  (inr " B ) )
51 fvun2 5579 . . . 4  |-  ( ( ( F  o.  `'inl )  Fn  (inl " dom  F )  /\  ( G  o.  `'inr )  Fn  (inr " B )  /\  ( ( (inl " dom  F )  i^i  (inr " B ) )  =  (/)  /\  (inr `  A )  e.  (inr " B ) ) )  ->  ( ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) `  (inr `  A ) )  =  ( ( G  o.  `'inr ) `  (inr `  A ) ) )
5216, 40, 42, 50, 51syl112anc 1242 . . 3  |-  ( ph  ->  ( ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) `  (inr `  A ) )  =  ( ( G  o.  `'inr ) `  (inr `  A ) ) )
532, 52eqtrid 2222 . 2  |-  ( ph  ->  (case ( F ,  G ) `  (inr `  A ) )  =  ( ( G  o.  `'inr ) `  (inr `  A ) ) )
54 f1ofn 5458 . . . 4  |-  ( `'inr
: ( { 1o }  X.  _V ) -1-1-onto-> _V  ->  `'inr 
Fn  ( { 1o }  X.  _V ) )
5522, 54ax-mp 5 . . 3  |-  `'inr  Fn  ( { 1o }  X.  _V )
56 f1of 5457 . . . . . 6  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V --> ( { 1o }  X.  _V ) )
5720, 56ax-mp 5 . . . . 5  |- inr : _V --> ( { 1o }  X.  _V )
5857a1i 9 . . . 4  |-  ( ph  -> inr : _V --> ( { 1o }  X.  _V ) )
5958, 44ffvelcdmd 5648 . . 3  |-  ( ph  ->  (inr `  A )  e.  ( { 1o }  X.  _V ) )
60 fvco2 5581 . . 3  |-  ( ( `'inr  Fn  ( { 1o }  X.  _V )  /\  (inr `  A )  e.  ( { 1o }  X.  _V ) )  -> 
( ( G  o.  `'inr ) `  (inr `  A ) )  =  ( G `  ( `'inr `  (inr `  A
) ) ) )
6155, 59, 60sylancr 414 . 2  |-  ( ph  ->  ( ( G  o.  `'inr ) `  (inr `  A ) )  =  ( G `  ( `'inr `  (inr `  A
) ) ) )
62 f1ocnvfv1 5772 . . . 4  |-  ( (inr : _V -1-1-onto-> ( { 1o }  X.  _V )  /\  A  e.  _V )  ->  ( `'inr `  (inr `  A
) )  =  A )
6320, 44, 62sylancr 414 . . 3  |-  ( ph  ->  ( `'inr `  (inr `  A ) )  =  A )
6463fveq2d 5515 . 2  |-  ( ph  ->  ( G `  ( `'inr `  (inr `  A
) ) )  =  ( G `  A
) )
6553, 61, 643eqtrd 2214 1  |-  ( ph  ->  (case ( F ,  G ) `  (inr `  A ) )  =  ( G `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2737    u. cun 3127    i^i cin 3128   (/)c0 3422   {csn 3591   <.cop 3594    X. cxp 4621   `'ccnv 4622   dom cdm 4623   "cima 4626    o. ccom 4627   Rel wrel 4628   Fun wfun 5206    Fn wfn 5207   -->wf 5208   -1-1-onto->wf1o 5211   ` cfv 5212   1oc1o 6404  inlcinl 7038  inrcinr 7039  casecdjucase 7076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-1st 6135  df-2nd 6136  df-1o 6411  df-inl 7040  df-inr 7041  df-case 7077
This theorem is referenced by:  omp1eomlem  7087
  Copyright terms: Public domain W3C validator