ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinr Unicode version

Theorem caseinr 7220
Description: Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.)
Hypotheses
Ref Expression
caseinr.f  |-  ( ph  ->  Fun  F )
caseinr.g  |-  ( ph  ->  G  Fn  B )
caseinr.a  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
caseinr  |-  ( ph  ->  (case ( F ,  G ) `  (inr `  A ) )  =  ( G `  A
) )

Proof of Theorem caseinr
StepHypRef Expression
1 df-case 7212 . . . 4  |- case ( F ,  G )  =  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr )
)
21fveq1i 5600 . . 3  |-  (case ( F ,  G ) `
 (inr `  A
) )  =  ( ( ( F  o.  `'inl )  u.  ( G  o.  `'inr )
) `  (inr `  A
) )
3 caseinr.f . . . . . 6  |-  ( ph  ->  Fun  F )
4 djulf1o 7186 . . . . . . . 8  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
5 f1ocnv 5557 . . . . . . . 8  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  ->  `'inl : ( { (/) }  X.  _V ) -1-1-onto-> _V )
64, 5ax-mp 5 . . . . . . 7  |-  `'inl :
( { (/) }  X.  _V ) -1-1-onto-> _V
7 f1ofun 5546 . . . . . . 7  |-  ( `'inl
: ( { (/) }  X.  _V ) -1-1-onto-> _V  ->  Fun  `'inl )
86, 7ax-mp 5 . . . . . 6  |-  Fun  `'inl
9 funco 5330 . . . . . 6  |-  ( ( Fun  F  /\  Fun  `'inl )  ->  Fun  ( F  o.  `'inl ) )
103, 8, 9sylancl 413 . . . . 5  |-  ( ph  ->  Fun  ( F  o.  `'inl ) )
11 dmco 5210 . . . . . . 7  |-  dom  ( F  o.  `'inl )  =  ( `' `'inl " dom  F )
12 imacnvcnv 5166 . . . . . . 7  |-  ( `' `'inl " dom  F )  =  (inl " dom  F )
1311, 12eqtri 2228 . . . . . 6  |-  dom  ( F  o.  `'inl )  =  (inl " dom  F
)
1413a1i 9 . . . . 5  |-  ( ph  ->  dom  ( F  o.  `'inl )  =  (inl " dom  F ) )
15 df-fn 5293 . . . . 5  |-  ( ( F  o.  `'inl )  Fn  (inl " dom  F
)  <->  ( Fun  ( F  o.  `'inl )  /\  dom  ( F  o.  `'inl )  =  (inl " dom  F ) ) )
1610, 14, 15sylanbrc 417 . . . 4  |-  ( ph  ->  ( F  o.  `'inl )  Fn  (inl " dom  F ) )
17 caseinr.g . . . . . . 7  |-  ( ph  ->  G  Fn  B )
18 fnfun 5390 . . . . . . 7  |-  ( G  Fn  B  ->  Fun  G )
1917, 18syl 14 . . . . . 6  |-  ( ph  ->  Fun  G )
20 djurf1o 7187 . . . . . . . 8  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
21 f1ocnv 5557 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  ->  `'inr :
( { 1o }  X.  _V ) -1-1-onto-> _V )
2220, 21ax-mp 5 . . . . . . 7  |-  `'inr :
( { 1o }  X.  _V ) -1-1-onto-> _V
23 f1ofun 5546 . . . . . . 7  |-  ( `'inr
: ( { 1o }  X.  _V ) -1-1-onto-> _V  ->  Fun  `'inr )
2422, 23ax-mp 5 . . . . . 6  |-  Fun  `'inr
25 funco 5330 . . . . . 6  |-  ( ( Fun  G  /\  Fun  `'inr )  ->  Fun  ( G  o.  `'inr ) )
2619, 24, 25sylancl 413 . . . . 5  |-  ( ph  ->  Fun  ( G  o.  `'inr ) )
27 dmco 5210 . . . . . 6  |-  dom  ( G  o.  `'inr )  =  ( `' `'inr " dom  G )
28 df-inr 7176 . . . . . . . . . . 11  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
2928funmpt2 5329 . . . . . . . . . 10  |-  Fun inr
30 funrel 5307 . . . . . . . . . 10  |-  ( Fun inr  ->  Rel inr )
3129, 30ax-mp 5 . . . . . . . . 9  |-  Rel inr
32 dfrel2 5152 . . . . . . . . 9  |-  ( Rel inr  <->  `' `'inr  = inr )
3331, 32mpbi 145 . . . . . . . 8  |-  `' `'inr  = inr
3433a1i 9 . . . . . . 7  |-  ( ph  ->  `' `'inr  = inr )
35 fndm 5392 . . . . . . . 8  |-  ( G  Fn  B  ->  dom  G  =  B )
3617, 35syl 14 . . . . . . 7  |-  ( ph  ->  dom  G  =  B )
3734, 36imaeq12d 5042 . . . . . 6  |-  ( ph  ->  ( `' `'inr " dom  G )  =  (inr " B ) )
3827, 37eqtrid 2252 . . . . 5  |-  ( ph  ->  dom  ( G  o.  `'inr )  =  (inr " B ) )
39 df-fn 5293 . . . . 5  |-  ( ( G  o.  `'inr )  Fn  (inr " B )  <-> 
( Fun  ( G  o.  `'inr )  /\  dom  ( G  o.  `'inr )  =  (inr " B ) ) )
4026, 38, 39sylanbrc 417 . . . 4  |-  ( ph  ->  ( G  o.  `'inr )  Fn  (inr " B
) )
41 djuin 7192 . . . . 5  |-  ( (inl " dom  F )  i^i  (inr " B ) )  =  (/)
4241a1i 9 . . . 4  |-  ( ph  ->  ( (inl " dom  F )  i^i  (inr " B ) )  =  (/) )
43 caseinr.a . . . . . . . 8  |-  ( ph  ->  A  e.  B )
4443elexd 2790 . . . . . . 7  |-  ( ph  ->  A  e.  _V )
45 f1odm 5548 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  ->  dom inr  =  _V )
4620, 45ax-mp 5 . . . . . . 7  |-  dom inr  =  _V
4744, 46eleqtrrdi 2301 . . . . . 6  |-  ( ph  ->  A  e.  dom inr )
4847, 29jctil 312 . . . . 5  |-  ( ph  ->  ( Fun inr  /\  A  e. 
dom inr ) )
49 funfvima 5839 . . . . 5  |-  ( ( Fun inr  /\  A  e.  dom inr )  ->  ( A  e.  B  ->  (inr `  A )  e.  (inr " B ) ) )
5048, 43, 49sylc 62 . . . 4  |-  ( ph  ->  (inr `  A )  e.  (inr " B ) )
51 fvun2 5669 . . . 4  |-  ( ( ( F  o.  `'inl )  Fn  (inl " dom  F )  /\  ( G  o.  `'inr )  Fn  (inr " B )  /\  ( ( (inl " dom  F )  i^i  (inr " B ) )  =  (/)  /\  (inr `  A )  e.  (inr " B ) ) )  ->  ( ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) `  (inr `  A ) )  =  ( ( G  o.  `'inr ) `  (inr `  A ) ) )
5216, 40, 42, 50, 51syl112anc 1254 . . 3  |-  ( ph  ->  ( ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) `  (inr `  A ) )  =  ( ( G  o.  `'inr ) `  (inr `  A ) ) )
532, 52eqtrid 2252 . 2  |-  ( ph  ->  (case ( F ,  G ) `  (inr `  A ) )  =  ( ( G  o.  `'inr ) `  (inr `  A ) ) )
54 f1ofn 5545 . . . 4  |-  ( `'inr
: ( { 1o }  X.  _V ) -1-1-onto-> _V  ->  `'inr 
Fn  ( { 1o }  X.  _V ) )
5522, 54ax-mp 5 . . 3  |-  `'inr  Fn  ( { 1o }  X.  _V )
56 f1of 5544 . . . . . 6  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V --> ( { 1o }  X.  _V ) )
5720, 56ax-mp 5 . . . . 5  |- inr : _V --> ( { 1o }  X.  _V )
5857a1i 9 . . . 4  |-  ( ph  -> inr : _V --> ( { 1o }  X.  _V ) )
5958, 44ffvelcdmd 5739 . . 3  |-  ( ph  ->  (inr `  A )  e.  ( { 1o }  X.  _V ) )
60 fvco2 5671 . . 3  |-  ( ( `'inr  Fn  ( { 1o }  X.  _V )  /\  (inr `  A )  e.  ( { 1o }  X.  _V ) )  -> 
( ( G  o.  `'inr ) `  (inr `  A ) )  =  ( G `  ( `'inr `  (inr `  A
) ) ) )
6155, 59, 60sylancr 414 . 2  |-  ( ph  ->  ( ( G  o.  `'inr ) `  (inr `  A ) )  =  ( G `  ( `'inr `  (inr `  A
) ) ) )
62 f1ocnvfv1 5869 . . . 4  |-  ( (inr : _V -1-1-onto-> ( { 1o }  X.  _V )  /\  A  e.  _V )  ->  ( `'inr `  (inr `  A
) )  =  A )
6320, 44, 62sylancr 414 . . 3  |-  ( ph  ->  ( `'inr `  (inr `  A ) )  =  A )
6463fveq2d 5603 . 2  |-  ( ph  ->  ( G `  ( `'inr `  (inr `  A
) ) )  =  ( G `  A
) )
6553, 61, 643eqtrd 2244 1  |-  ( ph  ->  (case ( F ,  G ) `  (inr `  A ) )  =  ( G `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776    u. cun 3172    i^i cin 3173   (/)c0 3468   {csn 3643   <.cop 3646    X. cxp 4691   `'ccnv 4692   dom cdm 4693   "cima 4696    o. ccom 4697   Rel wrel 4698   Fun wfun 5284    Fn wfn 5285   -->wf 5286   -1-1-onto->wf1o 5289   ` cfv 5290   1oc1o 6518  inlcinl 7173  inrcinr 7174  casecdjucase 7211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-inl 7175  df-inr 7176  df-case 7212
This theorem is referenced by:  omp1eomlem  7222
  Copyright terms: Public domain W3C validator