Proof of Theorem caseinr
Step | Hyp | Ref
| Expression |
1 | | df-case 7061 |
. . . 4
case inl
inr |
2 | 1 | fveq1i 5497 |
. . 3
case inr inl
inrinr |
3 | | caseinr.f |
. . . . . 6
|
4 | | djulf1o 7035 |
. . . . . . . 8
inl |
5 | | f1ocnv 5455 |
. . . . . . . 8
inl inl |
6 | 4, 5 | ax-mp 5 |
. . . . . . 7
inl |
7 | | f1ofun 5444 |
. . . . . . 7
inl inl |
8 | 6, 7 | ax-mp 5 |
. . . . . 6
inl |
9 | | funco 5238 |
. . . . . 6
inl
inl |
10 | 3, 8, 9 | sylancl 411 |
. . . . 5
inl |
11 | | dmco 5119 |
. . . . . . 7
inl inl |
12 | | imacnvcnv 5075 |
. . . . . . 7
inl inl |
13 | 11, 12 | eqtri 2191 |
. . . . . 6
inl inl |
14 | 13 | a1i 9 |
. . . . 5
inl
inl |
15 | | df-fn 5201 |
. . . . 5
inl inl
inl inl
inl |
16 | 10, 14, 15 | sylanbrc 415 |
. . . 4
inl
inl |
17 | | caseinr.g |
. . . . . . 7
|
18 | | fnfun 5295 |
. . . . . . 7
|
19 | 17, 18 | syl 14 |
. . . . . 6
|
20 | | djurf1o 7036 |
. . . . . . . 8
inr |
21 | | f1ocnv 5455 |
. . . . . . . 8
inr
inr |
22 | 20, 21 | ax-mp 5 |
. . . . . . 7
inr |
23 | | f1ofun 5444 |
. . . . . . 7
inr inr |
24 | 22, 23 | ax-mp 5 |
. . . . . 6
inr |
25 | | funco 5238 |
. . . . . 6
inr
inr |
26 | 19, 24, 25 | sylancl 411 |
. . . . 5
inr |
27 | | dmco 5119 |
. . . . . 6
inr inr |
28 | | df-inr 7025 |
. . . . . . . . . . 11
inr
|
29 | 28 | funmpt2 5237 |
. . . . . . . . . 10
inr |
30 | | funrel 5215 |
. . . . . . . . . 10
inr inr |
31 | 29, 30 | ax-mp 5 |
. . . . . . . . 9
inr |
32 | | dfrel2 5061 |
. . . . . . . . 9
inr inr inr |
33 | 31, 32 | mpbi 144 |
. . . . . . . 8
inr inr |
34 | 33 | a1i 9 |
. . . . . . 7
inr inr |
35 | | fndm 5297 |
. . . . . . . 8
|
36 | 17, 35 | syl 14 |
. . . . . . 7
|
37 | 34, 36 | imaeq12d 4954 |
. . . . . 6
inr inr |
38 | 27, 37 | eqtrid 2215 |
. . . . 5
inr
inr |
39 | | df-fn 5201 |
. . . . 5
inr inr
inr
inr inr |
40 | 26, 38, 39 | sylanbrc 415 |
. . . 4
inr
inr |
41 | | djuin 7041 |
. . . . 5
inl inr |
42 | 41 | a1i 9 |
. . . 4
inl inr |
43 | | caseinr.a |
. . . . . . . 8
|
44 | 43 | elexd 2743 |
. . . . . . 7
|
45 | | f1odm 5446 |
. . . . . . . 8
inr
inr |
46 | 20, 45 | ax-mp 5 |
. . . . . . 7
inr |
47 | 44, 46 | eleqtrrdi 2264 |
. . . . . 6
inr |
48 | 47, 29 | jctil 310 |
. . . . 5
inr
inr |
49 | | funfvima 5727 |
. . . . 5
inr
inr
inr inr |
50 | 48, 43, 49 | sylc 62 |
. . . 4
inr inr |
51 | | fvun2 5563 |
. . . 4
inl
inl inr inr inl inr inr inr inl inrinr inrinr |
52 | 16, 40, 42, 50, 51 | syl112anc 1237 |
. . 3
inl inrinr inrinr |
53 | 2, 52 | eqtrid 2215 |
. 2
case inr inrinr |
54 | | f1ofn 5443 |
. . . 4
inr inr |
55 | 22, 54 | ax-mp 5 |
. . 3
inr |
56 | | f1of 5442 |
. . . . . 6
inr
inr |
57 | 20, 56 | ax-mp 5 |
. . . . 5
inr |
58 | 57 | a1i 9 |
. . . 4
inr |
59 | 58, 44 | ffvelrnd 5632 |
. . 3
inr |
60 | | fvco2 5565 |
. . 3
inr inr inrinr inrinr |
61 | 55, 59, 60 | sylancr 412 |
. 2
inrinr inrinr |
62 | | f1ocnvfv1 5756 |
. . . 4
inr inrinr |
63 | 20, 44, 62 | sylancr 412 |
. . 3
inrinr |
64 | 63 | fveq2d 5500 |
. 2
inrinr |
65 | 53, 61, 64 | 3eqtrd 2207 |
1
case inr |