ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1en Unicode version

Theorem dif1en 6541
Description: If a set  A is equinumerous to the successor of a natural number  M, then  A with an element removed is equinumerous to  M. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
dif1en  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( A  \  { X } )  ~~  M
)

Proof of Theorem dif1en
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 simp2 942 . . . 4  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  A  ~~  suc  M
)
21ensymd 6446 . . 3  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  suc  M  ~~  A
)
3 bren 6410 . . 3  |-  ( suc 
M  ~~  A  <->  E. f 
f : suc  M -1-1-onto-> A
)
42, 3sylib 120 . 2  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  E. f  f : suc  M -1-1-onto-> A )
5 peano2 4382 . . . . . . . 8  |-  ( M  e.  om  ->  suc  M  e.  om )
6 nnfi 6534 . . . . . . . 8  |-  ( suc 
M  e.  om  ->  suc 
M  e.  Fin )
75, 6syl 14 . . . . . . 7  |-  ( M  e.  om  ->  suc  M  e.  Fin )
873ad2ant1 962 . . . . . 6  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  suc  M  e.  Fin )
9 enfii 6536 . . . . . 6  |-  ( ( suc  M  e.  Fin  /\  A  ~~  suc  M
)  ->  A  e.  Fin )
108, 1, 9syl2anc 403 . . . . 5  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  A  e.  Fin )
1110adantr 270 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  A  e.  Fin )
12 simpl3 946 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  X  e.  A )
13 f1of 5210 . . . . . 6  |-  ( f : suc  M -1-1-onto-> A  -> 
f : suc  M --> A )
1413adantl 271 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f : suc  M --> A )
15 sucidg 4216 . . . . . . 7  |-  ( M  e.  om  ->  M  e.  suc  M )
16153ad2ant1 962 . . . . . 6  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  M  e.  suc  M
)
1716adantr 270 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  e.  suc  M )
1814, 17ffvelrnd 5392 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f `  M )  e.  A )
19 fidifsnen 6532 . . . 4  |-  ( ( A  e.  Fin  /\  X  e.  A  /\  ( f `  M
)  e.  A )  ->  ( A  \  { X } )  ~~  ( A  \  { ( f `  M ) } ) )
2011, 12, 18, 19syl3anc 1172 . . 3  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( A  \  { X }
)  ~~  ( A  \  { ( f `  M ) } ) )
21 nnord 4398 . . . . . . . 8  |-  ( M  e.  om  ->  Ord  M )
22 orddif 4335 . . . . . . . 8  |-  ( Ord 
M  ->  M  =  ( suc  M  \  { M } ) )
2321, 22syl 14 . . . . . . 7  |-  ( M  e.  om  ->  M  =  ( suc  M  \  { M } ) )
24233ad2ant1 962 . . . . . 6  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  M  =  ( suc 
M  \  { M } ) )
2524adantr 270 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  =  ( suc  M  \  { M } ) )
2623eleq1d 2153 . . . . . . . . 9  |-  ( M  e.  om  ->  ( M  e.  om  <->  ( suc  M 
\  { M }
)  e.  om )
)
2726ibi 174 . . . . . . . 8  |-  ( M  e.  om  ->  ( suc  M  \  { M } )  e.  om )
28273ad2ant1 962 . . . . . . 7  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( suc  M  \  { M } )  e. 
om )
2928adantr 270 . . . . . 6  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( suc  M  \  { M } )  e.  om )
30 dff1o2 5215 . . . . . . . . 9  |-  ( f : suc  M -1-1-onto-> A  <->  ( f  Fn  suc  M  /\  Fun  `' f  /\  ran  f  =  A ) )
3130simp2bi 957 . . . . . . . 8  |-  ( f : suc  M -1-1-onto-> A  ->  Fun  `' f )
3231adantl 271 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  Fun  `' f )
33 f1ofo 5217 . . . . . . . . 9  |-  ( f : suc  M -1-1-onto-> A  -> 
f : suc  M -onto-> A )
3433adantl 271 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f : suc  M -onto-> A )
35 f1orel 5213 . . . . . . . . . . . 12  |-  ( f : suc  M -1-1-onto-> A  ->  Rel  f )
3635adantl 271 . . . . . . . . . . 11  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  Rel  f )
37 resdm 4717 . . . . . . . . . . 11  |-  ( Rel  f  ->  ( f  |` 
dom  f )  =  f )
3836, 37syl 14 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  dom  f )  =  f )
39 f1odm 5214 . . . . . . . . . . . 12  |-  ( f : suc  M -1-1-onto-> A  ->  dom  f  =  suc  M )
4039reseq2d 4680 . . . . . . . . . . 11  |-  ( f : suc  M -1-1-onto-> A  -> 
( f  |`  dom  f
)  =  ( f  |`  suc  M ) )
4140adantl 271 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  dom  f )  =  ( f  |`  suc  M ) )
4238, 41eqtr3d 2119 . . . . . . . . 9  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f  =  ( f  |`  suc  M ) )
43 foeq1 5186 . . . . . . . . 9  |-  ( f  =  ( f  |`  suc  M )  ->  (
f : suc  M -onto-> A 
<->  ( f  |`  suc  M
) : suc  M -onto-> A ) )
4442, 43syl 14 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f : suc  M -onto-> A 
<->  ( f  |`  suc  M
) : suc  M -onto-> A ) )
4534, 44mpbid 145 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  suc  M ) : suc  M -onto-> A
)
46 simpl1 944 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  e.  om )
47 f1osng 5251 . . . . . . . . . 10  |-  ( ( M  e.  om  /\  ( f `  M
)  e.  A )  ->  { <. M , 
( f `  M
) >. } : { M } -1-1-onto-> { ( f `  M ) } )
4846, 18, 47syl2anc 403 . . . . . . . . 9  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  { <. M ,  ( f `  M ) >. } : { M } -1-1-onto-> { ( f `  M ) } )
49 f1ofo 5217 . . . . . . . . 9  |-  ( {
<. M ,  ( f `
 M ) >. } : { M } -1-1-onto-> {
( f `  M
) }  ->  { <. M ,  ( f `  M ) >. } : { M } -onto-> { ( f `  M ) } )
5048, 49syl 14 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  { <. M ,  ( f `  M ) >. } : { M } -onto-> { ( f `  M ) } )
51 f1ofn 5211 . . . . . . . . . . 11  |-  ( f : suc  M -1-1-onto-> A  -> 
f  Fn  suc  M
)
5251adantl 271 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f  Fn  suc  M )
53 fnressn 5440 . . . . . . . . . 10  |-  ( ( f  Fn  suc  M  /\  M  e.  suc  M )  ->  ( f  |` 
{ M } )  =  { <. M , 
( f `  M
) >. } )
5452, 17, 53syl2anc 403 . . . . . . . . 9  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  { M }
)  =  { <. M ,  ( f `  M ) >. } )
55 foeq1 5186 . . . . . . . . 9  |-  ( ( f  |`  { M } )  =  { <. M ,  ( f `
 M ) >. }  ->  ( ( f  |`  { M } ) : { M } -onto-> { ( f `  M ) }  <->  { <. M , 
( f `  M
) >. } : { M } -onto-> { ( f `  M ) } ) )
5654, 55syl 14 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
( f  |`  { M } ) : { M } -onto-> { ( f `  M ) }  <->  { <. M , 
( f `  M
) >. } : { M } -onto-> { ( f `  M ) } ) )
5750, 56mpbird 165 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  { M }
) : { M } -onto-> { ( f `  M ) } )
58 resdif 5232 . . . . . . 7  |-  ( ( Fun  `' f  /\  ( f  |`  suc  M
) : suc  M -onto-> A  /\  ( f  |`  { M } ) : { M } -onto-> {
( f `  M
) } )  -> 
( f  |`  ( suc  M  \  { M } ) ) : ( suc  M  \  { M } ) -1-1-onto-> ( A 
\  { ( f `
 M ) } ) )
5932, 45, 57, 58syl3anc 1172 . . . . . 6  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  ( suc  M  \  { M } ) ) : ( suc 
M  \  { M } ) -1-1-onto-> ( A  \  {
( f `  M
) } ) )
60 f1oeng 6420 . . . . . 6  |-  ( ( ( suc  M  \  { M } )  e. 
om  /\  ( f  |`  ( suc  M  \  { M } ) ) : ( suc  M  \  { M } ) -1-1-onto-> ( A  \  { ( f `  M ) } ) )  -> 
( suc  M  \  { M } )  ~~  ( A  \  { ( f `
 M ) } ) )
6129, 59, 60syl2anc 403 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( suc  M  \  { M } )  ~~  ( A  \  { ( f `
 M ) } ) )
6225, 61eqbrtrd 3840 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  ~~  ( A  \  {
( f `  M
) } ) )
6362ensymd 6446 . . 3  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( A  \  { ( f `
 M ) } )  ~~  M )
64 entr 6447 . . 3  |-  ( ( ( A  \  { X } )  ~~  ( A  \  { ( f `
 M ) } )  /\  ( A 
\  { ( f `
 M ) } )  ~~  M )  ->  ( A  \  { X } )  ~~  M )
6520, 63, 64syl2anc 403 . 2  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( A  \  { X }
)  ~~  M )
664, 65exlimddv 1823 1  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( A  \  { X } )  ~~  M
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 922    = wceq 1287   E.wex 1424    e. wcel 1436    \ cdif 2985   {csn 3431   <.cop 3434   class class class wbr 3820   Ord word 4162   suc csuc 4165   omcom 4377   `'ccnv 4409   dom cdm 4410   ran crn 4411    |` cres 4412   Rel wrel 4415   Fun wfun 4972    Fn wfn 4973   -->wf 4974   -onto->wfo 4976   -1-1-onto->wf1o 4977   ` cfv 4978    ~~ cen 6401   Fincfn 6403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3928  ax-sep 3931  ax-nul 3939  ax-pow 3983  ax-pr 4009  ax-un 4233  ax-setind 4325  ax-iinf 4375
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3911  df-id 4093  df-iord 4166  df-on 4168  df-suc 4171  df-iom 4378  df-xp 4416  df-rel 4417  df-cnv 4418  df-co 4419  df-dm 4420  df-rn 4421  df-res 4422  df-ima 4423  df-iota 4943  df-fun 4980  df-fn 4981  df-f 4982  df-f1 4983  df-fo 4984  df-f1o 4985  df-fv 4986  df-er 6238  df-en 6404  df-fin 6406
This theorem is referenced by:  dif1enen  6542  findcard  6550  findcard2  6551  findcard2s  6552  diffisn  6555  en2eleq  6758  en2other2  6759  zfz1isolem1  10134
  Copyright terms: Public domain W3C validator