| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dif1en | Unicode version | ||
| Description: If a set |
| Ref | Expression |
|---|---|
| dif1en |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1000 |
. . . 4
| |
| 2 | 1 | ensymd 6842 |
. . 3
|
| 3 | bren 6806 |
. . 3
| |
| 4 | 2, 3 | sylib 122 |
. 2
|
| 5 | peano2 4631 |
. . . . . . . 8
| |
| 6 | nnfi 6933 |
. . . . . . . 8
| |
| 7 | 5, 6 | syl 14 |
. . . . . . 7
|
| 8 | 7 | 3ad2ant1 1020 |
. . . . . 6
|
| 9 | enfii 6935 |
. . . . . 6
| |
| 10 | 8, 1, 9 | syl2anc 411 |
. . . . 5
|
| 11 | 10 | adantr 276 |
. . . 4
|
| 12 | simpl3 1004 |
. . . 4
| |
| 13 | f1of 5504 |
. . . . . 6
| |
| 14 | 13 | adantl 277 |
. . . . 5
|
| 15 | sucidg 4451 |
. . . . . . 7
| |
| 16 | 15 | 3ad2ant1 1020 |
. . . . . 6
|
| 17 | 16 | adantr 276 |
. . . . 5
|
| 18 | 14, 17 | ffvelcdmd 5698 |
. . . 4
|
| 19 | fidifsnen 6931 |
. . . 4
| |
| 20 | 11, 12, 18, 19 | syl3anc 1249 |
. . 3
|
| 21 | nnord 4648 |
. . . . . . . 8
| |
| 22 | orddif 4583 |
. . . . . . . 8
| |
| 23 | 21, 22 | syl 14 |
. . . . . . 7
|
| 24 | 23 | 3ad2ant1 1020 |
. . . . . 6
|
| 25 | 24 | adantr 276 |
. . . . 5
|
| 26 | 23 | eleq1d 2265 |
. . . . . . . . 9
|
| 27 | 26 | ibi 176 |
. . . . . . . 8
|
| 28 | 27 | 3ad2ant1 1020 |
. . . . . . 7
|
| 29 | 28 | adantr 276 |
. . . . . 6
|
| 30 | dff1o2 5509 |
. . . . . . . . 9
| |
| 31 | 30 | simp2bi 1015 |
. . . . . . . 8
|
| 32 | 31 | adantl 277 |
. . . . . . 7
|
| 33 | f1ofo 5511 |
. . . . . . . . 9
| |
| 34 | 33 | adantl 277 |
. . . . . . . 8
|
| 35 | f1orel 5507 |
. . . . . . . . . . . 12
| |
| 36 | 35 | adantl 277 |
. . . . . . . . . . 11
|
| 37 | resdm 4985 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | syl 14 |
. . . . . . . . . 10
|
| 39 | f1odm 5508 |
. . . . . . . . . . . 12
| |
| 40 | 39 | reseq2d 4946 |
. . . . . . . . . . 11
|
| 41 | 40 | adantl 277 |
. . . . . . . . . 10
|
| 42 | 38, 41 | eqtr3d 2231 |
. . . . . . . . 9
|
| 43 | foeq1 5476 |
. . . . . . . . 9
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . 8
|
| 45 | 34, 44 | mpbid 147 |
. . . . . . 7
|
| 46 | simpl1 1002 |
. . . . . . . . . 10
| |
| 47 | f1osng 5545 |
. . . . . . . . . 10
| |
| 48 | 46, 18, 47 | syl2anc 411 |
. . . . . . . . 9
|
| 49 | f1ofo 5511 |
. . . . . . . . 9
| |
| 50 | 48, 49 | syl 14 |
. . . . . . . 8
|
| 51 | f1ofn 5505 |
. . . . . . . . . . 11
| |
| 52 | 51 | adantl 277 |
. . . . . . . . . 10
|
| 53 | fnressn 5748 |
. . . . . . . . . 10
| |
| 54 | 52, 17, 53 | syl2anc 411 |
. . . . . . . . 9
|
| 55 | foeq1 5476 |
. . . . . . . . 9
| |
| 56 | 54, 55 | syl 14 |
. . . . . . . 8
|
| 57 | 50, 56 | mpbird 167 |
. . . . . . 7
|
| 58 | resdif 5526 |
. . . . . . 7
| |
| 59 | 32, 45, 57, 58 | syl3anc 1249 |
. . . . . 6
|
| 60 | f1oeng 6816 |
. . . . . 6
| |
| 61 | 29, 59, 60 | syl2anc 411 |
. . . . 5
|
| 62 | 25, 61 | eqbrtrd 4055 |
. . . 4
|
| 63 | 62 | ensymd 6842 |
. . 3
|
| 64 | entr 6843 |
. . 3
| |
| 65 | 20, 63, 64 | syl2anc 411 |
. 2
|
| 66 | 4, 65 | exlimddv 1913 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-er 6592 df-en 6800 df-fin 6802 |
| This theorem is referenced by: dif1enen 6941 findcard 6949 findcard2 6950 findcard2s 6951 diffisn 6954 en2eleq 7262 en2other2 7263 zfz1isolem1 10932 |
| Copyright terms: Public domain | W3C validator |