ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1en Unicode version

Theorem dif1en 6741
Description: If a set  A is equinumerous to the successor of a natural number  M, then  A with an element removed is equinumerous to  M. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
dif1en  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( A  \  { X } )  ~~  M
)

Proof of Theorem dif1en
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 simp2 967 . . . 4  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  A  ~~  suc  M
)
21ensymd 6645 . . 3  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  suc  M  ~~  A
)
3 bren 6609 . . 3  |-  ( suc 
M  ~~  A  <->  E. f 
f : suc  M -1-1-onto-> A
)
42, 3sylib 121 . 2  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  E. f  f : suc  M -1-1-onto-> A )
5 peano2 4479 . . . . . . . 8  |-  ( M  e.  om  ->  suc  M  e.  om )
6 nnfi 6734 . . . . . . . 8  |-  ( suc 
M  e.  om  ->  suc 
M  e.  Fin )
75, 6syl 14 . . . . . . 7  |-  ( M  e.  om  ->  suc  M  e.  Fin )
873ad2ant1 987 . . . . . 6  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  suc  M  e.  Fin )
9 enfii 6736 . . . . . 6  |-  ( ( suc  M  e.  Fin  /\  A  ~~  suc  M
)  ->  A  e.  Fin )
108, 1, 9syl2anc 408 . . . . 5  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  A  e.  Fin )
1110adantr 274 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  A  e.  Fin )
12 simpl3 971 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  X  e.  A )
13 f1of 5335 . . . . . 6  |-  ( f : suc  M -1-1-onto-> A  -> 
f : suc  M --> A )
1413adantl 275 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f : suc  M --> A )
15 sucidg 4308 . . . . . . 7  |-  ( M  e.  om  ->  M  e.  suc  M )
16153ad2ant1 987 . . . . . 6  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  M  e.  suc  M
)
1716adantr 274 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  e.  suc  M )
1814, 17ffvelrnd 5524 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f `  M )  e.  A )
19 fidifsnen 6732 . . . 4  |-  ( ( A  e.  Fin  /\  X  e.  A  /\  ( f `  M
)  e.  A )  ->  ( A  \  { X } )  ~~  ( A  \  { ( f `  M ) } ) )
2011, 12, 18, 19syl3anc 1201 . . 3  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( A  \  { X }
)  ~~  ( A  \  { ( f `  M ) } ) )
21 nnord 4495 . . . . . . . 8  |-  ( M  e.  om  ->  Ord  M )
22 orddif 4432 . . . . . . . 8  |-  ( Ord 
M  ->  M  =  ( suc  M  \  { M } ) )
2321, 22syl 14 . . . . . . 7  |-  ( M  e.  om  ->  M  =  ( suc  M  \  { M } ) )
24233ad2ant1 987 . . . . . 6  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  M  =  ( suc 
M  \  { M } ) )
2524adantr 274 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  =  ( suc  M  \  { M } ) )
2623eleq1d 2186 . . . . . . . . 9  |-  ( M  e.  om  ->  ( M  e.  om  <->  ( suc  M 
\  { M }
)  e.  om )
)
2726ibi 175 . . . . . . . 8  |-  ( M  e.  om  ->  ( suc  M  \  { M } )  e.  om )
28273ad2ant1 987 . . . . . . 7  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( suc  M  \  { M } )  e. 
om )
2928adantr 274 . . . . . 6  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( suc  M  \  { M } )  e.  om )
30 dff1o2 5340 . . . . . . . . 9  |-  ( f : suc  M -1-1-onto-> A  <->  ( f  Fn  suc  M  /\  Fun  `' f  /\  ran  f  =  A ) )
3130simp2bi 982 . . . . . . . 8  |-  ( f : suc  M -1-1-onto-> A  ->  Fun  `' f )
3231adantl 275 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  Fun  `' f )
33 f1ofo 5342 . . . . . . . . 9  |-  ( f : suc  M -1-1-onto-> A  -> 
f : suc  M -onto-> A )
3433adantl 275 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f : suc  M -onto-> A )
35 f1orel 5338 . . . . . . . . . . . 12  |-  ( f : suc  M -1-1-onto-> A  ->  Rel  f )
3635adantl 275 . . . . . . . . . . 11  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  Rel  f )
37 resdm 4828 . . . . . . . . . . 11  |-  ( Rel  f  ->  ( f  |` 
dom  f )  =  f )
3836, 37syl 14 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  dom  f )  =  f )
39 f1odm 5339 . . . . . . . . . . . 12  |-  ( f : suc  M -1-1-onto-> A  ->  dom  f  =  suc  M )
4039reseq2d 4789 . . . . . . . . . . 11  |-  ( f : suc  M -1-1-onto-> A  -> 
( f  |`  dom  f
)  =  ( f  |`  suc  M ) )
4140adantl 275 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  dom  f )  =  ( f  |`  suc  M ) )
4238, 41eqtr3d 2152 . . . . . . . . 9  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f  =  ( f  |`  suc  M ) )
43 foeq1 5311 . . . . . . . . 9  |-  ( f  =  ( f  |`  suc  M )  ->  (
f : suc  M -onto-> A 
<->  ( f  |`  suc  M
) : suc  M -onto-> A ) )
4442, 43syl 14 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f : suc  M -onto-> A 
<->  ( f  |`  suc  M
) : suc  M -onto-> A ) )
4534, 44mpbid 146 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  suc  M ) : suc  M -onto-> A
)
46 simpl1 969 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  e.  om )
47 f1osng 5376 . . . . . . . . . 10  |-  ( ( M  e.  om  /\  ( f `  M
)  e.  A )  ->  { <. M , 
( f `  M
) >. } : { M } -1-1-onto-> { ( f `  M ) } )
4846, 18, 47syl2anc 408 . . . . . . . . 9  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  { <. M ,  ( f `  M ) >. } : { M } -1-1-onto-> { ( f `  M ) } )
49 f1ofo 5342 . . . . . . . . 9  |-  ( {
<. M ,  ( f `
 M ) >. } : { M } -1-1-onto-> {
( f `  M
) }  ->  { <. M ,  ( f `  M ) >. } : { M } -onto-> { ( f `  M ) } )
5048, 49syl 14 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  { <. M ,  ( f `  M ) >. } : { M } -onto-> { ( f `  M ) } )
51 f1ofn 5336 . . . . . . . . . . 11  |-  ( f : suc  M -1-1-onto-> A  -> 
f  Fn  suc  M
)
5251adantl 275 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f  Fn  suc  M )
53 fnressn 5574 . . . . . . . . . 10  |-  ( ( f  Fn  suc  M  /\  M  e.  suc  M )  ->  ( f  |` 
{ M } )  =  { <. M , 
( f `  M
) >. } )
5452, 17, 53syl2anc 408 . . . . . . . . 9  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  { M }
)  =  { <. M ,  ( f `  M ) >. } )
55 foeq1 5311 . . . . . . . . 9  |-  ( ( f  |`  { M } )  =  { <. M ,  ( f `
 M ) >. }  ->  ( ( f  |`  { M } ) : { M } -onto-> { ( f `  M ) }  <->  { <. M , 
( f `  M
) >. } : { M } -onto-> { ( f `  M ) } ) )
5654, 55syl 14 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
( f  |`  { M } ) : { M } -onto-> { ( f `  M ) }  <->  { <. M , 
( f `  M
) >. } : { M } -onto-> { ( f `  M ) } ) )
5750, 56mpbird 166 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  { M }
) : { M } -onto-> { ( f `  M ) } )
58 resdif 5357 . . . . . . 7  |-  ( ( Fun  `' f  /\  ( f  |`  suc  M
) : suc  M -onto-> A  /\  ( f  |`  { M } ) : { M } -onto-> {
( f `  M
) } )  -> 
( f  |`  ( suc  M  \  { M } ) ) : ( suc  M  \  { M } ) -1-1-onto-> ( A 
\  { ( f `
 M ) } ) )
5932, 45, 57, 58syl3anc 1201 . . . . . 6  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  ( suc  M  \  { M } ) ) : ( suc 
M  \  { M } ) -1-1-onto-> ( A  \  {
( f `  M
) } ) )
60 f1oeng 6619 . . . . . 6  |-  ( ( ( suc  M  \  { M } )  e. 
om  /\  ( f  |`  ( suc  M  \  { M } ) ) : ( suc  M  \  { M } ) -1-1-onto-> ( A  \  { ( f `  M ) } ) )  -> 
( suc  M  \  { M } )  ~~  ( A  \  { ( f `
 M ) } ) )
6129, 59, 60syl2anc 408 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( suc  M  \  { M } )  ~~  ( A  \  { ( f `
 M ) } ) )
6225, 61eqbrtrd 3920 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  ~~  ( A  \  {
( f `  M
) } ) )
6362ensymd 6645 . . 3  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( A  \  { ( f `
 M ) } )  ~~  M )
64 entr 6646 . . 3  |-  ( ( ( A  \  { X } )  ~~  ( A  \  { ( f `
 M ) } )  /\  ( A 
\  { ( f `
 M ) } )  ~~  M )  ->  ( A  \  { X } )  ~~  M )
6520, 63, 64syl2anc 408 . 2  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( A  \  { X }
)  ~~  M )
664, 65exlimddv 1854 1  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( A  \  { X } )  ~~  M
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 947    = wceq 1316   E.wex 1453    e. wcel 1465    \ cdif 3038   {csn 3497   <.cop 3500   class class class wbr 3899   Ord word 4254   suc csuc 4257   omcom 4474   `'ccnv 4508   dom cdm 4509   ran crn 4510    |` cres 4511   Rel wrel 4514   Fun wfun 5087    Fn wfn 5088   -->wf 5089   -onto->wfo 5091   -1-1-onto->wf1o 5092   ` cfv 5093    ~~ cen 6600   Fincfn 6602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-er 6397  df-en 6603  df-fin 6605
This theorem is referenced by:  dif1enen  6742  findcard  6750  findcard2  6751  findcard2s  6752  diffisn  6755  en2eleq  7019  en2other2  7020  zfz1isolem1  10551
  Copyright terms: Public domain W3C validator