| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dif1en | Unicode version | ||
| Description: If a set |
| Ref | Expression |
|---|---|
| dif1en |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1001 |
. . . 4
| |
| 2 | 1 | ensymd 6877 |
. . 3
|
| 3 | bren 6837 |
. . 3
| |
| 4 | 2, 3 | sylib 122 |
. 2
|
| 5 | peano2 4644 |
. . . . . . . 8
| |
| 6 | nnfi 6971 |
. . . . . . . 8
| |
| 7 | 5, 6 | syl 14 |
. . . . . . 7
|
| 8 | 7 | 3ad2ant1 1021 |
. . . . . 6
|
| 9 | enfii 6973 |
. . . . . 6
| |
| 10 | 8, 1, 9 | syl2anc 411 |
. . . . 5
|
| 11 | 10 | adantr 276 |
. . . 4
|
| 12 | simpl3 1005 |
. . . 4
| |
| 13 | f1of 5524 |
. . . . . 6
| |
| 14 | 13 | adantl 277 |
. . . . 5
|
| 15 | sucidg 4464 |
. . . . . . 7
| |
| 16 | 15 | 3ad2ant1 1021 |
. . . . . 6
|
| 17 | 16 | adantr 276 |
. . . . 5
|
| 18 | 14, 17 | ffvelcdmd 5718 |
. . . 4
|
| 19 | fidifsnen 6969 |
. . . 4
| |
| 20 | 11, 12, 18, 19 | syl3anc 1250 |
. . 3
|
| 21 | nnord 4661 |
. . . . . . . 8
| |
| 22 | orddif 4596 |
. . . . . . . 8
| |
| 23 | 21, 22 | syl 14 |
. . . . . . 7
|
| 24 | 23 | 3ad2ant1 1021 |
. . . . . 6
|
| 25 | 24 | adantr 276 |
. . . . 5
|
| 26 | 23 | eleq1d 2274 |
. . . . . . . . 9
|
| 27 | 26 | ibi 176 |
. . . . . . . 8
|
| 28 | 27 | 3ad2ant1 1021 |
. . . . . . 7
|
| 29 | 28 | adantr 276 |
. . . . . 6
|
| 30 | dff1o2 5529 |
. . . . . . . . 9
| |
| 31 | 30 | simp2bi 1016 |
. . . . . . . 8
|
| 32 | 31 | adantl 277 |
. . . . . . 7
|
| 33 | f1ofo 5531 |
. . . . . . . . 9
| |
| 34 | 33 | adantl 277 |
. . . . . . . 8
|
| 35 | f1orel 5527 |
. . . . . . . . . . . 12
| |
| 36 | 35 | adantl 277 |
. . . . . . . . . . 11
|
| 37 | resdm 4999 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | syl 14 |
. . . . . . . . . 10
|
| 39 | f1odm 5528 |
. . . . . . . . . . . 12
| |
| 40 | 39 | reseq2d 4960 |
. . . . . . . . . . 11
|
| 41 | 40 | adantl 277 |
. . . . . . . . . 10
|
| 42 | 38, 41 | eqtr3d 2240 |
. . . . . . . . 9
|
| 43 | foeq1 5496 |
. . . . . . . . 9
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . 8
|
| 45 | 34, 44 | mpbid 147 |
. . . . . . 7
|
| 46 | simpl1 1003 |
. . . . . . . . . 10
| |
| 47 | f1osng 5565 |
. . . . . . . . . 10
| |
| 48 | 46, 18, 47 | syl2anc 411 |
. . . . . . . . 9
|
| 49 | f1ofo 5531 |
. . . . . . . . 9
| |
| 50 | 48, 49 | syl 14 |
. . . . . . . 8
|
| 51 | f1ofn 5525 |
. . . . . . . . . . 11
| |
| 52 | 51 | adantl 277 |
. . . . . . . . . 10
|
| 53 | fnressn 5772 |
. . . . . . . . . 10
| |
| 54 | 52, 17, 53 | syl2anc 411 |
. . . . . . . . 9
|
| 55 | foeq1 5496 |
. . . . . . . . 9
| |
| 56 | 54, 55 | syl 14 |
. . . . . . . 8
|
| 57 | 50, 56 | mpbird 167 |
. . . . . . 7
|
| 58 | resdif 5546 |
. . . . . . 7
| |
| 59 | 32, 45, 57, 58 | syl3anc 1250 |
. . . . . 6
|
| 60 | f1oeng 6850 |
. . . . . 6
| |
| 61 | 29, 59, 60 | syl2anc 411 |
. . . . 5
|
| 62 | 25, 61 | eqbrtrd 4067 |
. . . 4
|
| 63 | 62 | ensymd 6877 |
. . 3
|
| 64 | entr 6878 |
. . 3
| |
| 65 | 20, 63, 64 | syl2anc 411 |
. 2
|
| 66 | 4, 65 | exlimddv 1922 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-er 6622 df-en 6830 df-fin 6832 |
| This theorem is referenced by: dif1enen 6979 findcard 6987 findcard2 6988 findcard2s 6989 diffisn 6992 en2eleq 7305 en2other2 7306 zfz1isolem1 10987 |
| Copyright terms: Public domain | W3C validator |