ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1en Unicode version

Theorem dif1en 6940
Description: If a set  A is equinumerous to the successor of a natural number  M, then  A with an element removed is equinumerous to  M. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
dif1en  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( A  \  { X } )  ~~  M
)

Proof of Theorem dif1en
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 simp2 1000 . . . 4  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  A  ~~  suc  M
)
21ensymd 6842 . . 3  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  suc  M  ~~  A
)
3 bren 6806 . . 3  |-  ( suc 
M  ~~  A  <->  E. f 
f : suc  M -1-1-onto-> A
)
42, 3sylib 122 . 2  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  E. f  f : suc  M -1-1-onto-> A )
5 peano2 4631 . . . . . . . 8  |-  ( M  e.  om  ->  suc  M  e.  om )
6 nnfi 6933 . . . . . . . 8  |-  ( suc 
M  e.  om  ->  suc 
M  e.  Fin )
75, 6syl 14 . . . . . . 7  |-  ( M  e.  om  ->  suc  M  e.  Fin )
873ad2ant1 1020 . . . . . 6  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  suc  M  e.  Fin )
9 enfii 6935 . . . . . 6  |-  ( ( suc  M  e.  Fin  /\  A  ~~  suc  M
)  ->  A  e.  Fin )
108, 1, 9syl2anc 411 . . . . 5  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  A  e.  Fin )
1110adantr 276 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  A  e.  Fin )
12 simpl3 1004 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  X  e.  A )
13 f1of 5504 . . . . . 6  |-  ( f : suc  M -1-1-onto-> A  -> 
f : suc  M --> A )
1413adantl 277 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f : suc  M --> A )
15 sucidg 4451 . . . . . . 7  |-  ( M  e.  om  ->  M  e.  suc  M )
16153ad2ant1 1020 . . . . . 6  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  M  e.  suc  M
)
1716adantr 276 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  e.  suc  M )
1814, 17ffvelcdmd 5698 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f `  M )  e.  A )
19 fidifsnen 6931 . . . 4  |-  ( ( A  e.  Fin  /\  X  e.  A  /\  ( f `  M
)  e.  A )  ->  ( A  \  { X } )  ~~  ( A  \  { ( f `  M ) } ) )
2011, 12, 18, 19syl3anc 1249 . . 3  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( A  \  { X }
)  ~~  ( A  \  { ( f `  M ) } ) )
21 nnord 4648 . . . . . . . 8  |-  ( M  e.  om  ->  Ord  M )
22 orddif 4583 . . . . . . . 8  |-  ( Ord 
M  ->  M  =  ( suc  M  \  { M } ) )
2321, 22syl 14 . . . . . . 7  |-  ( M  e.  om  ->  M  =  ( suc  M  \  { M } ) )
24233ad2ant1 1020 . . . . . 6  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  M  =  ( suc 
M  \  { M } ) )
2524adantr 276 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  =  ( suc  M  \  { M } ) )
2623eleq1d 2265 . . . . . . . . 9  |-  ( M  e.  om  ->  ( M  e.  om  <->  ( suc  M 
\  { M }
)  e.  om )
)
2726ibi 176 . . . . . . . 8  |-  ( M  e.  om  ->  ( suc  M  \  { M } )  e.  om )
28273ad2ant1 1020 . . . . . . 7  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( suc  M  \  { M } )  e. 
om )
2928adantr 276 . . . . . 6  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( suc  M  \  { M } )  e.  om )
30 dff1o2 5509 . . . . . . . . 9  |-  ( f : suc  M -1-1-onto-> A  <->  ( f  Fn  suc  M  /\  Fun  `' f  /\  ran  f  =  A ) )
3130simp2bi 1015 . . . . . . . 8  |-  ( f : suc  M -1-1-onto-> A  ->  Fun  `' f )
3231adantl 277 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  Fun  `' f )
33 f1ofo 5511 . . . . . . . . 9  |-  ( f : suc  M -1-1-onto-> A  -> 
f : suc  M -onto-> A )
3433adantl 277 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f : suc  M -onto-> A )
35 f1orel 5507 . . . . . . . . . . . 12  |-  ( f : suc  M -1-1-onto-> A  ->  Rel  f )
3635adantl 277 . . . . . . . . . . 11  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  Rel  f )
37 resdm 4985 . . . . . . . . . . 11  |-  ( Rel  f  ->  ( f  |` 
dom  f )  =  f )
3836, 37syl 14 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  dom  f )  =  f )
39 f1odm 5508 . . . . . . . . . . . 12  |-  ( f : suc  M -1-1-onto-> A  ->  dom  f  =  suc  M )
4039reseq2d 4946 . . . . . . . . . . 11  |-  ( f : suc  M -1-1-onto-> A  -> 
( f  |`  dom  f
)  =  ( f  |`  suc  M ) )
4140adantl 277 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  dom  f )  =  ( f  |`  suc  M ) )
4238, 41eqtr3d 2231 . . . . . . . . 9  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f  =  ( f  |`  suc  M ) )
43 foeq1 5476 . . . . . . . . 9  |-  ( f  =  ( f  |`  suc  M )  ->  (
f : suc  M -onto-> A 
<->  ( f  |`  suc  M
) : suc  M -onto-> A ) )
4442, 43syl 14 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f : suc  M -onto-> A 
<->  ( f  |`  suc  M
) : suc  M -onto-> A ) )
4534, 44mpbid 147 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  suc  M ) : suc  M -onto-> A
)
46 simpl1 1002 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  e.  om )
47 f1osng 5545 . . . . . . . . . 10  |-  ( ( M  e.  om  /\  ( f `  M
)  e.  A )  ->  { <. M , 
( f `  M
) >. } : { M } -1-1-onto-> { ( f `  M ) } )
4846, 18, 47syl2anc 411 . . . . . . . . 9  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  { <. M ,  ( f `  M ) >. } : { M } -1-1-onto-> { ( f `  M ) } )
49 f1ofo 5511 . . . . . . . . 9  |-  ( {
<. M ,  ( f `
 M ) >. } : { M } -1-1-onto-> {
( f `  M
) }  ->  { <. M ,  ( f `  M ) >. } : { M } -onto-> { ( f `  M ) } )
5048, 49syl 14 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  { <. M ,  ( f `  M ) >. } : { M } -onto-> { ( f `  M ) } )
51 f1ofn 5505 . . . . . . . . . . 11  |-  ( f : suc  M -1-1-onto-> A  -> 
f  Fn  suc  M
)
5251adantl 277 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f  Fn  suc  M )
53 fnressn 5748 . . . . . . . . . 10  |-  ( ( f  Fn  suc  M  /\  M  e.  suc  M )  ->  ( f  |` 
{ M } )  =  { <. M , 
( f `  M
) >. } )
5452, 17, 53syl2anc 411 . . . . . . . . 9  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  { M }
)  =  { <. M ,  ( f `  M ) >. } )
55 foeq1 5476 . . . . . . . . 9  |-  ( ( f  |`  { M } )  =  { <. M ,  ( f `
 M ) >. }  ->  ( ( f  |`  { M } ) : { M } -onto-> { ( f `  M ) }  <->  { <. M , 
( f `  M
) >. } : { M } -onto-> { ( f `  M ) } ) )
5654, 55syl 14 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
( f  |`  { M } ) : { M } -onto-> { ( f `  M ) }  <->  { <. M , 
( f `  M
) >. } : { M } -onto-> { ( f `  M ) } ) )
5750, 56mpbird 167 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  { M }
) : { M } -onto-> { ( f `  M ) } )
58 resdif 5526 . . . . . . 7  |-  ( ( Fun  `' f  /\  ( f  |`  suc  M
) : suc  M -onto-> A  /\  ( f  |`  { M } ) : { M } -onto-> {
( f `  M
) } )  -> 
( f  |`  ( suc  M  \  { M } ) ) : ( suc  M  \  { M } ) -1-1-onto-> ( A 
\  { ( f `
 M ) } ) )
5932, 45, 57, 58syl3anc 1249 . . . . . 6  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  ( suc  M  \  { M } ) ) : ( suc 
M  \  { M } ) -1-1-onto-> ( A  \  {
( f `  M
) } ) )
60 f1oeng 6816 . . . . . 6  |-  ( ( ( suc  M  \  { M } )  e. 
om  /\  ( f  |`  ( suc  M  \  { M } ) ) : ( suc  M  \  { M } ) -1-1-onto-> ( A  \  { ( f `  M ) } ) )  -> 
( suc  M  \  { M } )  ~~  ( A  \  { ( f `
 M ) } ) )
6129, 59, 60syl2anc 411 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( suc  M  \  { M } )  ~~  ( A  \  { ( f `
 M ) } ) )
6225, 61eqbrtrd 4055 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  ~~  ( A  \  {
( f `  M
) } ) )
6362ensymd 6842 . . 3  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( A  \  { ( f `
 M ) } )  ~~  M )
64 entr 6843 . . 3  |-  ( ( ( A  \  { X } )  ~~  ( A  \  { ( f `
 M ) } )  /\  ( A 
\  { ( f `
 M ) } )  ~~  M )  ->  ( A  \  { X } )  ~~  M )
6520, 63, 64syl2anc 411 . 2  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( A  \  { X }
)  ~~  M )
664, 65exlimddv 1913 1  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( A  \  { X } )  ~~  M
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167    \ cdif 3154   {csn 3622   <.cop 3625   class class class wbr 4033   Ord word 4397   suc csuc 4400   omcom 4626   `'ccnv 4662   dom cdm 4663   ran crn 4664    |` cres 4665   Rel wrel 4668   Fun wfun 5252    Fn wfn 5253   -->wf 5254   -onto->wfo 5256   -1-1-onto->wf1o 5257   ` cfv 5258    ~~ cen 6797   Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-er 6592  df-en 6800  df-fin 6802
This theorem is referenced by:  dif1enen  6941  findcard  6949  findcard2  6950  findcard2s  6951  diffisn  6954  en2eleq  7262  en2other2  7263  zfz1isolem1  10932
  Copyright terms: Public domain W3C validator