ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1en Unicode version

Theorem dif1en 6825
Description: If a set  A is equinumerous to the successor of a natural number  M, then  A with an element removed is equinumerous to  M. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
dif1en  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( A  \  { X } )  ~~  M
)

Proof of Theorem dif1en
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 simp2 983 . . . 4  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  A  ~~  suc  M
)
21ensymd 6729 . . 3  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  suc  M  ~~  A
)
3 bren 6693 . . 3  |-  ( suc 
M  ~~  A  <->  E. f 
f : suc  M -1-1-onto-> A
)
42, 3sylib 121 . 2  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  E. f  f : suc  M -1-1-onto-> A )
5 peano2 4555 . . . . . . . 8  |-  ( M  e.  om  ->  suc  M  e.  om )
6 nnfi 6818 . . . . . . . 8  |-  ( suc 
M  e.  om  ->  suc 
M  e.  Fin )
75, 6syl 14 . . . . . . 7  |-  ( M  e.  om  ->  suc  M  e.  Fin )
873ad2ant1 1003 . . . . . 6  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  suc  M  e.  Fin )
9 enfii 6820 . . . . . 6  |-  ( ( suc  M  e.  Fin  /\  A  ~~  suc  M
)  ->  A  e.  Fin )
108, 1, 9syl2anc 409 . . . . 5  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  A  e.  Fin )
1110adantr 274 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  A  e.  Fin )
12 simpl3 987 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  X  e.  A )
13 f1of 5415 . . . . . 6  |-  ( f : suc  M -1-1-onto-> A  -> 
f : suc  M --> A )
1413adantl 275 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f : suc  M --> A )
15 sucidg 4377 . . . . . . 7  |-  ( M  e.  om  ->  M  e.  suc  M )
16153ad2ant1 1003 . . . . . 6  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  M  e.  suc  M
)
1716adantr 274 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  e.  suc  M )
1814, 17ffvelrnd 5604 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f `  M )  e.  A )
19 fidifsnen 6816 . . . 4  |-  ( ( A  e.  Fin  /\  X  e.  A  /\  ( f `  M
)  e.  A )  ->  ( A  \  { X } )  ~~  ( A  \  { ( f `  M ) } ) )
2011, 12, 18, 19syl3anc 1220 . . 3  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( A  \  { X }
)  ~~  ( A  \  { ( f `  M ) } ) )
21 nnord 4572 . . . . . . . 8  |-  ( M  e.  om  ->  Ord  M )
22 orddif 4507 . . . . . . . 8  |-  ( Ord 
M  ->  M  =  ( suc  M  \  { M } ) )
2321, 22syl 14 . . . . . . 7  |-  ( M  e.  om  ->  M  =  ( suc  M  \  { M } ) )
24233ad2ant1 1003 . . . . . 6  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  M  =  ( suc 
M  \  { M } ) )
2524adantr 274 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  =  ( suc  M  \  { M } ) )
2623eleq1d 2226 . . . . . . . . 9  |-  ( M  e.  om  ->  ( M  e.  om  <->  ( suc  M 
\  { M }
)  e.  om )
)
2726ibi 175 . . . . . . . 8  |-  ( M  e.  om  ->  ( suc  M  \  { M } )  e.  om )
28273ad2ant1 1003 . . . . . . 7  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( suc  M  \  { M } )  e. 
om )
2928adantr 274 . . . . . 6  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( suc  M  \  { M } )  e.  om )
30 dff1o2 5420 . . . . . . . . 9  |-  ( f : suc  M -1-1-onto-> A  <->  ( f  Fn  suc  M  /\  Fun  `' f  /\  ran  f  =  A ) )
3130simp2bi 998 . . . . . . . 8  |-  ( f : suc  M -1-1-onto-> A  ->  Fun  `' f )
3231adantl 275 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  Fun  `' f )
33 f1ofo 5422 . . . . . . . . 9  |-  ( f : suc  M -1-1-onto-> A  -> 
f : suc  M -onto-> A )
3433adantl 275 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f : suc  M -onto-> A )
35 f1orel 5418 . . . . . . . . . . . 12  |-  ( f : suc  M -1-1-onto-> A  ->  Rel  f )
3635adantl 275 . . . . . . . . . . 11  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  Rel  f )
37 resdm 4906 . . . . . . . . . . 11  |-  ( Rel  f  ->  ( f  |` 
dom  f )  =  f )
3836, 37syl 14 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  dom  f )  =  f )
39 f1odm 5419 . . . . . . . . . . . 12  |-  ( f : suc  M -1-1-onto-> A  ->  dom  f  =  suc  M )
4039reseq2d 4867 . . . . . . . . . . 11  |-  ( f : suc  M -1-1-onto-> A  -> 
( f  |`  dom  f
)  =  ( f  |`  suc  M ) )
4140adantl 275 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  dom  f )  =  ( f  |`  suc  M ) )
4238, 41eqtr3d 2192 . . . . . . . . 9  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f  =  ( f  |`  suc  M ) )
43 foeq1 5389 . . . . . . . . 9  |-  ( f  =  ( f  |`  suc  M )  ->  (
f : suc  M -onto-> A 
<->  ( f  |`  suc  M
) : suc  M -onto-> A ) )
4442, 43syl 14 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f : suc  M -onto-> A 
<->  ( f  |`  suc  M
) : suc  M -onto-> A ) )
4534, 44mpbid 146 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  suc  M ) : suc  M -onto-> A
)
46 simpl1 985 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  e.  om )
47 f1osng 5456 . . . . . . . . . 10  |-  ( ( M  e.  om  /\  ( f `  M
)  e.  A )  ->  { <. M , 
( f `  M
) >. } : { M } -1-1-onto-> { ( f `  M ) } )
4846, 18, 47syl2anc 409 . . . . . . . . 9  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  { <. M ,  ( f `  M ) >. } : { M } -1-1-onto-> { ( f `  M ) } )
49 f1ofo 5422 . . . . . . . . 9  |-  ( {
<. M ,  ( f `
 M ) >. } : { M } -1-1-onto-> {
( f `  M
) }  ->  { <. M ,  ( f `  M ) >. } : { M } -onto-> { ( f `  M ) } )
5048, 49syl 14 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  { <. M ,  ( f `  M ) >. } : { M } -onto-> { ( f `  M ) } )
51 f1ofn 5416 . . . . . . . . . . 11  |-  ( f : suc  M -1-1-onto-> A  -> 
f  Fn  suc  M
)
5251adantl 275 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f  Fn  suc  M )
53 fnressn 5654 . . . . . . . . . 10  |-  ( ( f  Fn  suc  M  /\  M  e.  suc  M )  ->  ( f  |` 
{ M } )  =  { <. M , 
( f `  M
) >. } )
5452, 17, 53syl2anc 409 . . . . . . . . 9  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  { M }
)  =  { <. M ,  ( f `  M ) >. } )
55 foeq1 5389 . . . . . . . . 9  |-  ( ( f  |`  { M } )  =  { <. M ,  ( f `
 M ) >. }  ->  ( ( f  |`  { M } ) : { M } -onto-> { ( f `  M ) }  <->  { <. M , 
( f `  M
) >. } : { M } -onto-> { ( f `  M ) } ) )
5654, 55syl 14 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
( f  |`  { M } ) : { M } -onto-> { ( f `  M ) }  <->  { <. M , 
( f `  M
) >. } : { M } -onto-> { ( f `  M ) } ) )
5750, 56mpbird 166 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  { M }
) : { M } -onto-> { ( f `  M ) } )
58 resdif 5437 . . . . . . 7  |-  ( ( Fun  `' f  /\  ( f  |`  suc  M
) : suc  M -onto-> A  /\  ( f  |`  { M } ) : { M } -onto-> {
( f `  M
) } )  -> 
( f  |`  ( suc  M  \  { M } ) ) : ( suc  M  \  { M } ) -1-1-onto-> ( A 
\  { ( f `
 M ) } ) )
5932, 45, 57, 58syl3anc 1220 . . . . . 6  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  ( suc  M  \  { M } ) ) : ( suc 
M  \  { M } ) -1-1-onto-> ( A  \  {
( f `  M
) } ) )
60 f1oeng 6703 . . . . . 6  |-  ( ( ( suc  M  \  { M } )  e. 
om  /\  ( f  |`  ( suc  M  \  { M } ) ) : ( suc  M  \  { M } ) -1-1-onto-> ( A  \  { ( f `  M ) } ) )  -> 
( suc  M  \  { M } )  ~~  ( A  \  { ( f `
 M ) } ) )
6129, 59, 60syl2anc 409 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( suc  M  \  { M } )  ~~  ( A  \  { ( f `
 M ) } ) )
6225, 61eqbrtrd 3987 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  ~~  ( A  \  {
( f `  M
) } ) )
6362ensymd 6729 . . 3  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( A  \  { ( f `
 M ) } )  ~~  M )
64 entr 6730 . . 3  |-  ( ( ( A  \  { X } )  ~~  ( A  \  { ( f `
 M ) } )  /\  ( A 
\  { ( f `
 M ) } )  ~~  M )  ->  ( A  \  { X } )  ~~  M )
6520, 63, 64syl2anc 409 . 2  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( A  \  { X }
)  ~~  M )
664, 65exlimddv 1878 1  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( A  \  { X } )  ~~  M
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335   E.wex 1472    e. wcel 2128    \ cdif 3099   {csn 3560   <.cop 3563   class class class wbr 3966   Ord word 4323   suc csuc 4326   omcom 4550   `'ccnv 4586   dom cdm 4587   ran crn 4588    |` cres 4589   Rel wrel 4592   Fun wfun 5165    Fn wfn 5166   -->wf 5167   -onto->wfo 5169   -1-1-onto->wf1o 5170   ` cfv 5171    ~~ cen 6684   Fincfn 6686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-iord 4327  df-on 4329  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-er 6481  df-en 6687  df-fin 6689
This theorem is referenced by:  dif1enen  6826  findcard  6834  findcard2  6835  findcard2s  6836  diffisn  6839  en2eleq  7131  en2other2  7132  zfz1isolem1  10715
  Copyright terms: Public domain W3C validator