| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dif1en | Unicode version | ||
| Description: If a set |
| Ref | Expression |
|---|---|
| dif1en |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1022 |
. . . 4
| |
| 2 | 1 | ensymd 6935 |
. . 3
|
| 3 | bren 6895 |
. . 3
| |
| 4 | 2, 3 | sylib 122 |
. 2
|
| 5 | peano2 4687 |
. . . . . . . 8
| |
| 6 | nnfi 7034 |
. . . . . . . 8
| |
| 7 | 5, 6 | syl 14 |
. . . . . . 7
|
| 8 | 7 | 3ad2ant1 1042 |
. . . . . 6
|
| 9 | enfii 7036 |
. . . . . 6
| |
| 10 | 8, 1, 9 | syl2anc 411 |
. . . . 5
|
| 11 | 10 | adantr 276 |
. . . 4
|
| 12 | simpl3 1026 |
. . . 4
| |
| 13 | f1of 5572 |
. . . . . 6
| |
| 14 | 13 | adantl 277 |
. . . . 5
|
| 15 | sucidg 4507 |
. . . . . . 7
| |
| 16 | 15 | 3ad2ant1 1042 |
. . . . . 6
|
| 17 | 16 | adantr 276 |
. . . . 5
|
| 18 | 14, 17 | ffvelcdmd 5771 |
. . . 4
|
| 19 | fidifsnen 7032 |
. . . 4
| |
| 20 | 11, 12, 18, 19 | syl3anc 1271 |
. . 3
|
| 21 | nnord 4704 |
. . . . . . . 8
| |
| 22 | orddif 4639 |
. . . . . . . 8
| |
| 23 | 21, 22 | syl 14 |
. . . . . . 7
|
| 24 | 23 | 3ad2ant1 1042 |
. . . . . 6
|
| 25 | 24 | adantr 276 |
. . . . 5
|
| 26 | 23 | eleq1d 2298 |
. . . . . . . . 9
|
| 27 | 26 | ibi 176 |
. . . . . . . 8
|
| 28 | 27 | 3ad2ant1 1042 |
. . . . . . 7
|
| 29 | 28 | adantr 276 |
. . . . . 6
|
| 30 | dff1o2 5577 |
. . . . . . . . 9
| |
| 31 | 30 | simp2bi 1037 |
. . . . . . . 8
|
| 32 | 31 | adantl 277 |
. . . . . . 7
|
| 33 | f1ofo 5579 |
. . . . . . . . 9
| |
| 34 | 33 | adantl 277 |
. . . . . . . 8
|
| 35 | f1orel 5575 |
. . . . . . . . . . . 12
| |
| 36 | 35 | adantl 277 |
. . . . . . . . . . 11
|
| 37 | resdm 5044 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | syl 14 |
. . . . . . . . . 10
|
| 39 | f1odm 5576 |
. . . . . . . . . . . 12
| |
| 40 | 39 | reseq2d 5005 |
. . . . . . . . . . 11
|
| 41 | 40 | adantl 277 |
. . . . . . . . . 10
|
| 42 | 38, 41 | eqtr3d 2264 |
. . . . . . . . 9
|
| 43 | foeq1 5544 |
. . . . . . . . 9
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . 8
|
| 45 | 34, 44 | mpbid 147 |
. . . . . . 7
|
| 46 | simpl1 1024 |
. . . . . . . . . 10
| |
| 47 | f1osng 5614 |
. . . . . . . . . 10
| |
| 48 | 46, 18, 47 | syl2anc 411 |
. . . . . . . . 9
|
| 49 | f1ofo 5579 |
. . . . . . . . 9
| |
| 50 | 48, 49 | syl 14 |
. . . . . . . 8
|
| 51 | f1ofn 5573 |
. . . . . . . . . . 11
| |
| 52 | 51 | adantl 277 |
. . . . . . . . . 10
|
| 53 | fnressn 5825 |
. . . . . . . . . 10
| |
| 54 | 52, 17, 53 | syl2anc 411 |
. . . . . . . . 9
|
| 55 | foeq1 5544 |
. . . . . . . . 9
| |
| 56 | 54, 55 | syl 14 |
. . . . . . . 8
|
| 57 | 50, 56 | mpbird 167 |
. . . . . . 7
|
| 58 | resdif 5594 |
. . . . . . 7
| |
| 59 | 32, 45, 57, 58 | syl3anc 1271 |
. . . . . 6
|
| 60 | f1oeng 6908 |
. . . . . 6
| |
| 61 | 29, 59, 60 | syl2anc 411 |
. . . . 5
|
| 62 | 25, 61 | eqbrtrd 4105 |
. . . 4
|
| 63 | 62 | ensymd 6935 |
. . 3
|
| 64 | entr 6936 |
. . 3
| |
| 65 | 20, 63, 64 | syl2anc 411 |
. 2
|
| 66 | 4, 65 | exlimddv 1945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-er 6680 df-en 6888 df-fin 6890 |
| This theorem is referenced by: dif1enen 7042 findcard 7050 findcard2 7051 findcard2s 7052 diffisn 7055 en2eleq 7373 en2other2 7374 zfz1isolem1 11062 |
| Copyright terms: Public domain | W3C validator |