Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dif1en | Unicode version |
Description: If a set is equinumerous to the successor of a natural number , then with an element removed is equinumerous to . (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) |
Ref | Expression |
---|---|
dif1en |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 988 | . . . 4 | |
2 | 1 | ensymd 6749 | . . 3 |
3 | bren 6713 | . . 3 | |
4 | 2, 3 | sylib 121 | . 2 |
5 | peano2 4572 | . . . . . . . 8 | |
6 | nnfi 6838 | . . . . . . . 8 | |
7 | 5, 6 | syl 14 | . . . . . . 7 |
8 | 7 | 3ad2ant1 1008 | . . . . . 6 |
9 | enfii 6840 | . . . . . 6 | |
10 | 8, 1, 9 | syl2anc 409 | . . . . 5 |
11 | 10 | adantr 274 | . . . 4 |
12 | simpl3 992 | . . . 4 | |
13 | f1of 5432 | . . . . . 6 | |
14 | 13 | adantl 275 | . . . . 5 |
15 | sucidg 4394 | . . . . . . 7 | |
16 | 15 | 3ad2ant1 1008 | . . . . . 6 |
17 | 16 | adantr 274 | . . . . 5 |
18 | 14, 17 | ffvelrnd 5621 | . . . 4 |
19 | fidifsnen 6836 | . . . 4 | |
20 | 11, 12, 18, 19 | syl3anc 1228 | . . 3 |
21 | nnord 4589 | . . . . . . . 8 | |
22 | orddif 4524 | . . . . . . . 8 | |
23 | 21, 22 | syl 14 | . . . . . . 7 |
24 | 23 | 3ad2ant1 1008 | . . . . . 6 |
25 | 24 | adantr 274 | . . . . 5 |
26 | 23 | eleq1d 2235 | . . . . . . . . 9 |
27 | 26 | ibi 175 | . . . . . . . 8 |
28 | 27 | 3ad2ant1 1008 | . . . . . . 7 |
29 | 28 | adantr 274 | . . . . . 6 |
30 | dff1o2 5437 | . . . . . . . . 9 | |
31 | 30 | simp2bi 1003 | . . . . . . . 8 |
32 | 31 | adantl 275 | . . . . . . 7 |
33 | f1ofo 5439 | . . . . . . . . 9 | |
34 | 33 | adantl 275 | . . . . . . . 8 |
35 | f1orel 5435 | . . . . . . . . . . . 12 | |
36 | 35 | adantl 275 | . . . . . . . . . . 11 |
37 | resdm 4923 | . . . . . . . . . . 11 | |
38 | 36, 37 | syl 14 | . . . . . . . . . 10 |
39 | f1odm 5436 | . . . . . . . . . . . 12 | |
40 | 39 | reseq2d 4884 | . . . . . . . . . . 11 |
41 | 40 | adantl 275 | . . . . . . . . . 10 |
42 | 38, 41 | eqtr3d 2200 | . . . . . . . . 9 |
43 | foeq1 5406 | . . . . . . . . 9 | |
44 | 42, 43 | syl 14 | . . . . . . . 8 |
45 | 34, 44 | mpbid 146 | . . . . . . 7 |
46 | simpl1 990 | . . . . . . . . . 10 | |
47 | f1osng 5473 | . . . . . . . . . 10 | |
48 | 46, 18, 47 | syl2anc 409 | . . . . . . . . 9 |
49 | f1ofo 5439 | . . . . . . . . 9 | |
50 | 48, 49 | syl 14 | . . . . . . . 8 |
51 | f1ofn 5433 | . . . . . . . . . . 11 | |
52 | 51 | adantl 275 | . . . . . . . . . 10 |
53 | fnressn 5671 | . . . . . . . . . 10 | |
54 | 52, 17, 53 | syl2anc 409 | . . . . . . . . 9 |
55 | foeq1 5406 | . . . . . . . . 9 | |
56 | 54, 55 | syl 14 | . . . . . . . 8 |
57 | 50, 56 | mpbird 166 | . . . . . . 7 |
58 | resdif 5454 | . . . . . . 7 | |
59 | 32, 45, 57, 58 | syl3anc 1228 | . . . . . 6 |
60 | f1oeng 6723 | . . . . . 6 | |
61 | 29, 59, 60 | syl2anc 409 | . . . . 5 |
62 | 25, 61 | eqbrtrd 4004 | . . . 4 |
63 | 62 | ensymd 6749 | . . 3 |
64 | entr 6750 | . . 3 | |
65 | 20, 63, 64 | syl2anc 409 | . 2 |
66 | 4, 65 | exlimddv 1886 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wex 1480 wcel 2136 cdif 3113 csn 3576 cop 3579 class class class wbr 3982 word 4340 csuc 4343 com 4567 ccnv 4603 cdm 4604 crn 4605 cres 4606 wrel 4609 wfun 5182 wfn 5183 wf 5184 wfo 5186 wf1o 5187 cfv 5188 cen 6704 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: dif1enen 6846 findcard 6854 findcard2 6855 findcard2s 6856 diffisn 6859 en2eleq 7151 en2other2 7152 zfz1isolem1 10753 |
Copyright terms: Public domain | W3C validator |