ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1en Unicode version

Theorem dif1en 7002
Description: If a set  A is equinumerous to the successor of a natural number  M, then  A with an element removed is equinumerous to  M. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
dif1en  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( A  \  { X } )  ~~  M
)

Proof of Theorem dif1en
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 simp2 1001 . . . 4  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  A  ~~  suc  M
)
21ensymd 6898 . . 3  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  suc  M  ~~  A
)
3 bren 6858 . . 3  |-  ( suc 
M  ~~  A  <->  E. f 
f : suc  M -1-1-onto-> A
)
42, 3sylib 122 . 2  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  E. f  f : suc  M -1-1-onto-> A )
5 peano2 4661 . . . . . . . 8  |-  ( M  e.  om  ->  suc  M  e.  om )
6 nnfi 6995 . . . . . . . 8  |-  ( suc 
M  e.  om  ->  suc 
M  e.  Fin )
75, 6syl 14 . . . . . . 7  |-  ( M  e.  om  ->  suc  M  e.  Fin )
873ad2ant1 1021 . . . . . 6  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  suc  M  e.  Fin )
9 enfii 6997 . . . . . 6  |-  ( ( suc  M  e.  Fin  /\  A  ~~  suc  M
)  ->  A  e.  Fin )
108, 1, 9syl2anc 411 . . . . 5  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  A  e.  Fin )
1110adantr 276 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  A  e.  Fin )
12 simpl3 1005 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  X  e.  A )
13 f1of 5544 . . . . . 6  |-  ( f : suc  M -1-1-onto-> A  -> 
f : suc  M --> A )
1413adantl 277 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f : suc  M --> A )
15 sucidg 4481 . . . . . . 7  |-  ( M  e.  om  ->  M  e.  suc  M )
16153ad2ant1 1021 . . . . . 6  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  M  e.  suc  M
)
1716adantr 276 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  e.  suc  M )
1814, 17ffvelcdmd 5739 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f `  M )  e.  A )
19 fidifsnen 6993 . . . 4  |-  ( ( A  e.  Fin  /\  X  e.  A  /\  ( f `  M
)  e.  A )  ->  ( A  \  { X } )  ~~  ( A  \  { ( f `  M ) } ) )
2011, 12, 18, 19syl3anc 1250 . . 3  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( A  \  { X }
)  ~~  ( A  \  { ( f `  M ) } ) )
21 nnord 4678 . . . . . . . 8  |-  ( M  e.  om  ->  Ord  M )
22 orddif 4613 . . . . . . . 8  |-  ( Ord 
M  ->  M  =  ( suc  M  \  { M } ) )
2321, 22syl 14 . . . . . . 7  |-  ( M  e.  om  ->  M  =  ( suc  M  \  { M } ) )
24233ad2ant1 1021 . . . . . 6  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  M  =  ( suc 
M  \  { M } ) )
2524adantr 276 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  =  ( suc  M  \  { M } ) )
2623eleq1d 2276 . . . . . . . . 9  |-  ( M  e.  om  ->  ( M  e.  om  <->  ( suc  M 
\  { M }
)  e.  om )
)
2726ibi 176 . . . . . . . 8  |-  ( M  e.  om  ->  ( suc  M  \  { M } )  e.  om )
28273ad2ant1 1021 . . . . . . 7  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( suc  M  \  { M } )  e. 
om )
2928adantr 276 . . . . . 6  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( suc  M  \  { M } )  e.  om )
30 dff1o2 5549 . . . . . . . . 9  |-  ( f : suc  M -1-1-onto-> A  <->  ( f  Fn  suc  M  /\  Fun  `' f  /\  ran  f  =  A ) )
3130simp2bi 1016 . . . . . . . 8  |-  ( f : suc  M -1-1-onto-> A  ->  Fun  `' f )
3231adantl 277 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  Fun  `' f )
33 f1ofo 5551 . . . . . . . . 9  |-  ( f : suc  M -1-1-onto-> A  -> 
f : suc  M -onto-> A )
3433adantl 277 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f : suc  M -onto-> A )
35 f1orel 5547 . . . . . . . . . . . 12  |-  ( f : suc  M -1-1-onto-> A  ->  Rel  f )
3635adantl 277 . . . . . . . . . . 11  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  Rel  f )
37 resdm 5017 . . . . . . . . . . 11  |-  ( Rel  f  ->  ( f  |` 
dom  f )  =  f )
3836, 37syl 14 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  dom  f )  =  f )
39 f1odm 5548 . . . . . . . . . . . 12  |-  ( f : suc  M -1-1-onto-> A  ->  dom  f  =  suc  M )
4039reseq2d 4978 . . . . . . . . . . 11  |-  ( f : suc  M -1-1-onto-> A  -> 
( f  |`  dom  f
)  =  ( f  |`  suc  M ) )
4140adantl 277 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  dom  f )  =  ( f  |`  suc  M ) )
4238, 41eqtr3d 2242 . . . . . . . . 9  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f  =  ( f  |`  suc  M ) )
43 foeq1 5516 . . . . . . . . 9  |-  ( f  =  ( f  |`  suc  M )  ->  (
f : suc  M -onto-> A 
<->  ( f  |`  suc  M
) : suc  M -onto-> A ) )
4442, 43syl 14 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f : suc  M -onto-> A 
<->  ( f  |`  suc  M
) : suc  M -onto-> A ) )
4534, 44mpbid 147 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  suc  M ) : suc  M -onto-> A
)
46 simpl1 1003 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  e.  om )
47 f1osng 5586 . . . . . . . . . 10  |-  ( ( M  e.  om  /\  ( f `  M
)  e.  A )  ->  { <. M , 
( f `  M
) >. } : { M } -1-1-onto-> { ( f `  M ) } )
4846, 18, 47syl2anc 411 . . . . . . . . 9  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  { <. M ,  ( f `  M ) >. } : { M } -1-1-onto-> { ( f `  M ) } )
49 f1ofo 5551 . . . . . . . . 9  |-  ( {
<. M ,  ( f `
 M ) >. } : { M } -1-1-onto-> {
( f `  M
) }  ->  { <. M ,  ( f `  M ) >. } : { M } -onto-> { ( f `  M ) } )
5048, 49syl 14 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  { <. M ,  ( f `  M ) >. } : { M } -onto-> { ( f `  M ) } )
51 f1ofn 5545 . . . . . . . . . . 11  |-  ( f : suc  M -1-1-onto-> A  -> 
f  Fn  suc  M
)
5251adantl 277 . . . . . . . . . 10  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  f  Fn  suc  M )
53 fnressn 5793 . . . . . . . . . 10  |-  ( ( f  Fn  suc  M  /\  M  e.  suc  M )  ->  ( f  |` 
{ M } )  =  { <. M , 
( f `  M
) >. } )
5452, 17, 53syl2anc 411 . . . . . . . . 9  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  { M }
)  =  { <. M ,  ( f `  M ) >. } )
55 foeq1 5516 . . . . . . . . 9  |-  ( ( f  |`  { M } )  =  { <. M ,  ( f `
 M ) >. }  ->  ( ( f  |`  { M } ) : { M } -onto-> { ( f `  M ) }  <->  { <. M , 
( f `  M
) >. } : { M } -onto-> { ( f `  M ) } ) )
5654, 55syl 14 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
( f  |`  { M } ) : { M } -onto-> { ( f `  M ) }  <->  { <. M , 
( f `  M
) >. } : { M } -onto-> { ( f `  M ) } ) )
5750, 56mpbird 167 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  { M }
) : { M } -onto-> { ( f `  M ) } )
58 resdif 5566 . . . . . . 7  |-  ( ( Fun  `' f  /\  ( f  |`  suc  M
) : suc  M -onto-> A  /\  ( f  |`  { M } ) : { M } -onto-> {
( f `  M
) } )  -> 
( f  |`  ( suc  M  \  { M } ) ) : ( suc  M  \  { M } ) -1-1-onto-> ( A 
\  { ( f `
 M ) } ) )
5932, 45, 57, 58syl3anc 1250 . . . . . 6  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  (
f  |`  ( suc  M  \  { M } ) ) : ( suc 
M  \  { M } ) -1-1-onto-> ( A  \  {
( f `  M
) } ) )
60 f1oeng 6871 . . . . . 6  |-  ( ( ( suc  M  \  { M } )  e. 
om  /\  ( f  |`  ( suc  M  \  { M } ) ) : ( suc  M  \  { M } ) -1-1-onto-> ( A  \  { ( f `  M ) } ) )  -> 
( suc  M  \  { M } )  ~~  ( A  \  { ( f `
 M ) } ) )
6129, 59, 60syl2anc 411 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( suc  M  \  { M } )  ~~  ( A  \  { ( f `
 M ) } ) )
6225, 61eqbrtrd 4081 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  M  ~~  ( A  \  {
( f `  M
) } ) )
6362ensymd 6898 . . 3  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( A  \  { ( f `
 M ) } )  ~~  M )
64 entr 6899 . . 3  |-  ( ( ( A  \  { X } )  ~~  ( A  \  { ( f `
 M ) } )  /\  ( A 
\  { ( f `
 M ) } )  ~~  M )  ->  ( A  \  { X } )  ~~  M )
6520, 63, 64syl2anc 411 . 2  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  f : suc  M -1-1-onto-> A )  ->  ( A  \  { X }
)  ~~  M )
664, 65exlimddv 1923 1  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( A  \  { X } )  ~~  M
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2178    \ cdif 3171   {csn 3643   <.cop 3646   class class class wbr 4059   Ord word 4427   suc csuc 4430   omcom 4656   `'ccnv 4692   dom cdm 4693   ran crn 4694    |` cres 4695   Rel wrel 4698   Fun wfun 5284    Fn wfn 5285   -->wf 5286   -onto->wfo 5288   -1-1-onto->wf1o 5289   ` cfv 5290    ~~ cen 6848   Fincfn 6850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-er 6643  df-en 6851  df-fin 6853
This theorem is referenced by:  dif1enen  7003  findcard  7011  findcard2  7012  findcard2s  7013  diffisn  7016  en2eleq  7334  en2other2  7335  zfz1isolem1  11022
  Copyright terms: Public domain W3C validator