| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dif1en | Unicode version | ||
| Description: If a set |
| Ref | Expression |
|---|---|
| dif1en |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1001 |
. . . 4
| |
| 2 | 1 | ensymd 6898 |
. . 3
|
| 3 | bren 6858 |
. . 3
| |
| 4 | 2, 3 | sylib 122 |
. 2
|
| 5 | peano2 4661 |
. . . . . . . 8
| |
| 6 | nnfi 6995 |
. . . . . . . 8
| |
| 7 | 5, 6 | syl 14 |
. . . . . . 7
|
| 8 | 7 | 3ad2ant1 1021 |
. . . . . 6
|
| 9 | enfii 6997 |
. . . . . 6
| |
| 10 | 8, 1, 9 | syl2anc 411 |
. . . . 5
|
| 11 | 10 | adantr 276 |
. . . 4
|
| 12 | simpl3 1005 |
. . . 4
| |
| 13 | f1of 5544 |
. . . . . 6
| |
| 14 | 13 | adantl 277 |
. . . . 5
|
| 15 | sucidg 4481 |
. . . . . . 7
| |
| 16 | 15 | 3ad2ant1 1021 |
. . . . . 6
|
| 17 | 16 | adantr 276 |
. . . . 5
|
| 18 | 14, 17 | ffvelcdmd 5739 |
. . . 4
|
| 19 | fidifsnen 6993 |
. . . 4
| |
| 20 | 11, 12, 18, 19 | syl3anc 1250 |
. . 3
|
| 21 | nnord 4678 |
. . . . . . . 8
| |
| 22 | orddif 4613 |
. . . . . . . 8
| |
| 23 | 21, 22 | syl 14 |
. . . . . . 7
|
| 24 | 23 | 3ad2ant1 1021 |
. . . . . 6
|
| 25 | 24 | adantr 276 |
. . . . 5
|
| 26 | 23 | eleq1d 2276 |
. . . . . . . . 9
|
| 27 | 26 | ibi 176 |
. . . . . . . 8
|
| 28 | 27 | 3ad2ant1 1021 |
. . . . . . 7
|
| 29 | 28 | adantr 276 |
. . . . . 6
|
| 30 | dff1o2 5549 |
. . . . . . . . 9
| |
| 31 | 30 | simp2bi 1016 |
. . . . . . . 8
|
| 32 | 31 | adantl 277 |
. . . . . . 7
|
| 33 | f1ofo 5551 |
. . . . . . . . 9
| |
| 34 | 33 | adantl 277 |
. . . . . . . 8
|
| 35 | f1orel 5547 |
. . . . . . . . . . . 12
| |
| 36 | 35 | adantl 277 |
. . . . . . . . . . 11
|
| 37 | resdm 5017 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | syl 14 |
. . . . . . . . . 10
|
| 39 | f1odm 5548 |
. . . . . . . . . . . 12
| |
| 40 | 39 | reseq2d 4978 |
. . . . . . . . . . 11
|
| 41 | 40 | adantl 277 |
. . . . . . . . . 10
|
| 42 | 38, 41 | eqtr3d 2242 |
. . . . . . . . 9
|
| 43 | foeq1 5516 |
. . . . . . . . 9
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . 8
|
| 45 | 34, 44 | mpbid 147 |
. . . . . . 7
|
| 46 | simpl1 1003 |
. . . . . . . . . 10
| |
| 47 | f1osng 5586 |
. . . . . . . . . 10
| |
| 48 | 46, 18, 47 | syl2anc 411 |
. . . . . . . . 9
|
| 49 | f1ofo 5551 |
. . . . . . . . 9
| |
| 50 | 48, 49 | syl 14 |
. . . . . . . 8
|
| 51 | f1ofn 5545 |
. . . . . . . . . . 11
| |
| 52 | 51 | adantl 277 |
. . . . . . . . . 10
|
| 53 | fnressn 5793 |
. . . . . . . . . 10
| |
| 54 | 52, 17, 53 | syl2anc 411 |
. . . . . . . . 9
|
| 55 | foeq1 5516 |
. . . . . . . . 9
| |
| 56 | 54, 55 | syl 14 |
. . . . . . . 8
|
| 57 | 50, 56 | mpbird 167 |
. . . . . . 7
|
| 58 | resdif 5566 |
. . . . . . 7
| |
| 59 | 32, 45, 57, 58 | syl3anc 1250 |
. . . . . 6
|
| 60 | f1oeng 6871 |
. . . . . 6
| |
| 61 | 29, 59, 60 | syl2anc 411 |
. . . . 5
|
| 62 | 25, 61 | eqbrtrd 4081 |
. . . 4
|
| 63 | 62 | ensymd 6898 |
. . 3
|
| 64 | entr 6899 |
. . 3
| |
| 65 | 20, 63, 64 | syl2anc 411 |
. 2
|
| 66 | 4, 65 | exlimddv 1923 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-er 6643 df-en 6851 df-fin 6853 |
| This theorem is referenced by: dif1enen 7003 findcard 7011 findcard2 7012 findcard2s 7013 diffisn 7016 en2eleq 7334 en2other2 7335 zfz1isolem1 11022 |
| Copyright terms: Public domain | W3C validator |