![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1odm | GIF version |
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 5481 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 5334 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 dom cdm 4644 Fn wfn 5230 –1-1-onto→wf1o 5234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-fn 5238 df-f 5239 df-f1 5240 df-f1o 5242 |
This theorem is referenced by: f1imacnv 5497 f1opw2 6099 xpcomco 6851 mapen 6873 ssenen 6878 phplem4 6882 phplem4on 6894 dif1en 6906 fiintim 6956 caseinl 7119 caseinr 7120 ctssdccl 7139 fihasheqf1oi 10798 hashfacen 10847 fisumss 11431 |
Copyright terms: Public domain | W3C validator |