| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1odm | GIF version | ||
| Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn 5532 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fndm 5379 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 dom cdm 4680 Fn wfn 5272 –1-1-onto→wf1o 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5280 df-f 5281 df-f1 5282 df-f1o 5284 |
| This theorem is referenced by: f1imacnv 5548 f1opw2 6162 en2 6923 xpcomco 6933 mapen 6955 ssenen 6960 phplem4 6964 phplem4on 6976 dif1en 6988 fiintim 7040 caseinl 7205 caseinr 7206 ctssdccl 7225 fihasheqf1oi 10945 hashfacen 10994 fisumss 11753 |
| Copyright terms: Public domain | W3C validator |