ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1odm GIF version

Theorem f1odm 5484
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1odm (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem f1odm
StepHypRef Expression
1 f1ofn 5481 . 2 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
2 fndm 5334 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  dom cdm 4644   Fn wfn 5230  1-1-ontowf1o 5234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5238  df-f 5239  df-f1 5240  df-f1o 5242
This theorem is referenced by:  f1imacnv  5497  f1opw2  6099  xpcomco  6851  mapen  6873  ssenen  6878  phplem4  6882  phplem4on  6894  dif1en  6906  fiintim  6956  caseinl  7119  caseinr  7120  ctssdccl  7139  fihasheqf1oi  10798  hashfacen  10847  fisumss  11431
  Copyright terms: Public domain W3C validator