ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1odm GIF version

Theorem f1odm 5508
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1odm (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem f1odm
StepHypRef Expression
1 f1ofn 5505 . 2 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
2 fndm 5357 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  dom cdm 4663   Fn wfn 5253  1-1-ontowf1o 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5261  df-f 5262  df-f1 5263  df-f1o 5265
This theorem is referenced by:  f1imacnv  5521  f1opw2  6129  xpcomco  6885  mapen  6907  ssenen  6912  phplem4  6916  phplem4on  6928  dif1en  6940  fiintim  6992  caseinl  7157  caseinr  7158  ctssdccl  7177  fihasheqf1oi  10879  hashfacen  10928  fisumss  11557
  Copyright terms: Public domain W3C validator