| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1odm | GIF version | ||
| Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn 5569 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fndm 5416 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 dom cdm 4716 Fn wfn 5309 –1-1-onto→wf1o 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5317 df-f 5318 df-f1 5319 df-f1o 5321 |
| This theorem is referenced by: f1imacnv 5585 f1opw2 6202 en2 6963 xpcomco 6973 mapen 6995 ssenen 7000 phplem4 7004 phplem4on 7017 dif1en 7029 fiintim 7081 caseinl 7246 caseinr 7247 ctssdccl 7266 fihasheqf1oi 10996 hashfacen 11045 fisumss 11889 |
| Copyright terms: Public domain | W3C validator |