![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1odm | GIF version |
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 5501 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 5353 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 dom cdm 4659 Fn wfn 5249 –1-1-onto→wf1o 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-fn 5257 df-f 5258 df-f1 5259 df-f1o 5261 |
This theorem is referenced by: f1imacnv 5517 f1opw2 6124 xpcomco 6880 mapen 6902 ssenen 6907 phplem4 6911 phplem4on 6923 dif1en 6935 fiintim 6985 caseinl 7150 caseinr 7151 ctssdccl 7170 fihasheqf1oi 10858 hashfacen 10907 fisumss 11535 |
Copyright terms: Public domain | W3C validator |