ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1odm GIF version

Theorem f1odm 5535
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1odm (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem f1odm
StepHypRef Expression
1 f1ofn 5532 . 2 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
2 fndm 5379 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  dom cdm 4680   Fn wfn 5272  1-1-ontowf1o 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5280  df-f 5281  df-f1 5282  df-f1o 5284
This theorem is referenced by:  f1imacnv  5548  f1opw2  6162  en2  6923  xpcomco  6933  mapen  6955  ssenen  6960  phplem4  6964  phplem4on  6976  dif1en  6988  fiintim  7040  caseinl  7205  caseinr  7206  ctssdccl  7225  fihasheqf1oi  10945  hashfacen  10994  fisumss  11753
  Copyright terms: Public domain W3C validator