ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1odm GIF version

Theorem f1odm 5505
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1odm (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem f1odm
StepHypRef Expression
1 f1ofn 5502 . 2 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
2 fndm 5354 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  dom cdm 4660   Fn wfn 5250  1-1-ontowf1o 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5258  df-f 5259  df-f1 5260  df-f1o 5262
This theorem is referenced by:  f1imacnv  5518  f1opw2  6126  xpcomco  6882  mapen  6904  ssenen  6909  phplem4  6913  phplem4on  6925  dif1en  6937  fiintim  6987  caseinl  7152  caseinr  7153  ctssdccl  7172  fihasheqf1oi  10861  hashfacen  10910  fisumss  11538
  Copyright terms: Public domain W3C validator