ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1odm GIF version

Theorem f1odm 5509
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1odm (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem f1odm
StepHypRef Expression
1 f1ofn 5506 . 2 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
2 fndm 5358 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  dom cdm 4664   Fn wfn 5254  1-1-ontowf1o 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5262  df-f 5263  df-f1 5264  df-f1o 5266
This theorem is referenced by:  f1imacnv  5522  f1opw2  6130  xpcomco  6886  mapen  6908  ssenen  6913  phplem4  6917  phplem4on  6929  dif1en  6941  fiintim  6993  caseinl  7158  caseinr  7159  ctssdccl  7178  fihasheqf1oi  10881  hashfacen  10930  fisumss  11559
  Copyright terms: Public domain W3C validator