Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1odm | GIF version |
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 5433 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 5287 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 dom cdm 4604 Fn wfn 5183 –1-1-onto→wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-fn 5191 df-f 5192 df-f1 5193 df-f1o 5195 |
This theorem is referenced by: f1imacnv 5449 f1opw2 6044 xpcomco 6792 mapen 6812 ssenen 6817 phplem4 6821 phplem4on 6833 dif1en 6845 fiintim 6894 caseinl 7056 caseinr 7057 ctssdccl 7076 fihasheqf1oi 10701 hashfacen 10749 fisumss 11333 |
Copyright terms: Public domain | W3C validator |