| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1odm | GIF version | ||
| Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn 5575 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fndm 5420 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 dom cdm 4719 Fn wfn 5313 –1-1-onto→wf1o 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5321 df-f 5322 df-f1 5323 df-f1o 5325 |
| This theorem is referenced by: f1imacnv 5591 f1opw2 6218 en2 6981 xpcomco 6993 mapen 7015 ssenen 7020 phplem4 7024 phplem4on 7037 dif1en 7049 fiintim 7101 caseinl 7266 caseinr 7267 ctssdccl 7286 fihasheqf1oi 11017 hashfacen 11066 fisumss 11911 |
| Copyright terms: Public domain | W3C validator |