ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1odm GIF version

Theorem f1odm 5436
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1odm (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem f1odm
StepHypRef Expression
1 f1ofn 5433 . 2 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
2 fndm 5287 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  dom cdm 4604   Fn wfn 5183  1-1-ontowf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-fn 5191  df-f 5192  df-f1 5193  df-f1o 5195
This theorem is referenced by:  f1imacnv  5449  f1opw2  6044  xpcomco  6792  mapen  6812  ssenen  6817  phplem4  6821  phplem4on  6833  dif1en  6845  fiintim  6894  caseinl  7056  caseinr  7057  ctssdccl  7076  fihasheqf1oi  10701  hashfacen  10749  fisumss  11333
  Copyright terms: Public domain W3C validator