ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1odm GIF version

Theorem f1odm 5572
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1odm (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem f1odm
StepHypRef Expression
1 f1ofn 5569 . 2 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
2 fndm 5416 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  dom cdm 4716   Fn wfn 5309  1-1-ontowf1o 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5317  df-f 5318  df-f1 5319  df-f1o 5321
This theorem is referenced by:  f1imacnv  5585  f1opw2  6202  en2  6963  xpcomco  6973  mapen  6995  ssenen  7000  phplem4  7004  phplem4on  7017  dif1en  7029  fiintim  7081  caseinl  7246  caseinr  7247  ctssdccl  7266  fihasheqf1oi  10996  hashfacen  11045  fisumss  11889
  Copyright terms: Public domain W3C validator