ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1odm GIF version

Theorem f1odm 5578
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1odm (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem f1odm
StepHypRef Expression
1 f1ofn 5575 . 2 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
2 fndm 5420 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  dom cdm 4719   Fn wfn 5313  1-1-ontowf1o 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5321  df-f 5322  df-f1 5323  df-f1o 5325
This theorem is referenced by:  f1imacnv  5591  f1opw2  6218  en2  6981  xpcomco  6993  mapen  7015  ssenen  7020  phplem4  7024  phplem4on  7037  dif1en  7049  fiintim  7101  caseinl  7266  caseinr  7267  ctssdccl  7286  fihasheqf1oi  11017  hashfacen  11066  fisumss  11911
  Copyright terms: Public domain W3C validator