Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1odm | GIF version |
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1odm | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 5443 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 5297 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 dom cdm 4611 Fn wfn 5193 –1-1-onto→wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-fn 5201 df-f 5202 df-f1 5203 df-f1o 5205 |
This theorem is referenced by: f1imacnv 5459 f1opw2 6055 xpcomco 6804 mapen 6824 ssenen 6829 phplem4 6833 phplem4on 6845 dif1en 6857 fiintim 6906 caseinl 7068 caseinr 7069 ctssdccl 7088 fihasheqf1oi 10722 hashfacen 10771 fisumss 11355 |
Copyright terms: Public domain | W3C validator |