ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinl Unicode version

Theorem caseinl 6976
Description: Applying the "case" construction to a left injection. (Contributed by Jim Kingdon, 15-Mar-2023.)
Hypotheses
Ref Expression
caseinl.f  |-  ( ph  ->  F  Fn  B )
caseinl.g  |-  ( ph  ->  Fun  G )
caseinl.a  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
caseinl  |-  ( ph  ->  (case ( F ,  G ) `  (inl `  A ) )  =  ( F `  A
) )

Proof of Theorem caseinl
StepHypRef Expression
1 df-case 6969 . . . 4  |- case ( F ,  G )  =  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr )
)
21fveq1i 5422 . . 3  |-  (case ( F ,  G ) `
 (inl `  A
) )  =  ( ( ( F  o.  `'inl )  u.  ( G  o.  `'inr )
) `  (inl `  A
) )
3 caseinl.f . . . . . . 7  |-  ( ph  ->  F  Fn  B )
4 fnfun 5220 . . . . . . 7  |-  ( F  Fn  B  ->  Fun  F )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  Fun  F )
6 djulf1o 6943 . . . . . . . 8  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
7 f1ocnv 5380 . . . . . . . 8  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  ->  `'inl : ( { (/) }  X.  _V ) -1-1-onto-> _V )
86, 7ax-mp 5 . . . . . . 7  |-  `'inl :
( { (/) }  X.  _V ) -1-1-onto-> _V
9 f1ofun 5369 . . . . . . 7  |-  ( `'inl
: ( { (/) }  X.  _V ) -1-1-onto-> _V  ->  Fun  `'inl )
108, 9ax-mp 5 . . . . . 6  |-  Fun  `'inl
11 funco 5163 . . . . . 6  |-  ( ( Fun  F  /\  Fun  `'inl )  ->  Fun  ( F  o.  `'inl ) )
125, 10, 11sylancl 409 . . . . 5  |-  ( ph  ->  Fun  ( F  o.  `'inl ) )
13 dmco 5047 . . . . . 6  |-  dom  ( F  o.  `'inl )  =  ( `' `'inl " dom  F )
14 df-inl 6932 . . . . . . . . . . 11  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
1514funmpt2 5162 . . . . . . . . . 10  |-  Fun inl
16 funrel 5140 . . . . . . . . . 10  |-  ( Fun inl  ->  Rel inl )
1715, 16ax-mp 5 . . . . . . . . 9  |-  Rel inl
18 dfrel2 4989 . . . . . . . . 9  |-  ( Rel inl  <->  `' `'inl  = inl )
1917, 18mpbi 144 . . . . . . . 8  |-  `' `'inl  = inl
2019a1i 9 . . . . . . 7  |-  ( ph  ->  `' `'inl  = inl )
21 fndm 5222 . . . . . . . 8  |-  ( F  Fn  B  ->  dom  F  =  B )
223, 21syl 14 . . . . . . 7  |-  ( ph  ->  dom  F  =  B )
2320, 22imaeq12d 4882 . . . . . 6  |-  ( ph  ->  ( `' `'inl " dom  F )  =  (inl " B ) )
2413, 23syl5eq 2184 . . . . 5  |-  ( ph  ->  dom  ( F  o.  `'inl )  =  (inl " B ) )
25 df-fn 5126 . . . . 5  |-  ( ( F  o.  `'inl )  Fn  (inl " B )  <-> 
( Fun  ( F  o.  `'inl )  /\  dom  ( F  o.  `'inl )  =  (inl " B ) ) )
2612, 24, 25sylanbrc 413 . . . 4  |-  ( ph  ->  ( F  o.  `'inl )  Fn  (inl " B
) )
27 caseinl.g . . . . . 6  |-  ( ph  ->  Fun  G )
28 djurf1o 6944 . . . . . . . 8  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
29 f1ocnv 5380 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  ->  `'inr :
( { 1o }  X.  _V ) -1-1-onto-> _V )
3028, 29ax-mp 5 . . . . . . 7  |-  `'inr :
( { 1o }  X.  _V ) -1-1-onto-> _V
31 f1ofun 5369 . . . . . . 7  |-  ( `'inr
: ( { 1o }  X.  _V ) -1-1-onto-> _V  ->  Fun  `'inr )
3230, 31ax-mp 5 . . . . . 6  |-  Fun  `'inr
33 funco 5163 . . . . . 6  |-  ( ( Fun  G  /\  Fun  `'inr )  ->  Fun  ( G  o.  `'inr ) )
3427, 32, 33sylancl 409 . . . . 5  |-  ( ph  ->  Fun  ( G  o.  `'inr ) )
35 dmco 5047 . . . . . . 7  |-  dom  ( G  o.  `'inr )  =  ( `' `'inr " dom  G )
36 imacnvcnv 5003 . . . . . . 7  |-  ( `' `'inr " dom  G )  =  (inr " dom  G )
3735, 36eqtri 2160 . . . . . 6  |-  dom  ( G  o.  `'inr )  =  (inr " dom  G
)
3837a1i 9 . . . . 5  |-  ( ph  ->  dom  ( G  o.  `'inr )  =  (inr " dom  G ) )
39 df-fn 5126 . . . . 5  |-  ( ( G  o.  `'inr )  Fn  (inr " dom  G
)  <->  ( Fun  ( G  o.  `'inr )  /\  dom  ( G  o.  `'inr )  =  (inr " dom  G ) ) )
4034, 38, 39sylanbrc 413 . . . 4  |-  ( ph  ->  ( G  o.  `'inr )  Fn  (inr " dom  G ) )
41 djuin 6949 . . . . 5  |-  ( (inl " B )  i^i  (inr " dom  G ) )  =  (/)
4241a1i 9 . . . 4  |-  ( ph  ->  ( (inl " B
)  i^i  (inr " dom  G ) )  =  (/) )
43 caseinl.a . . . . . . . 8  |-  ( ph  ->  A  e.  B )
4443elexd 2699 . . . . . . 7  |-  ( ph  ->  A  e.  _V )
45 f1odm 5371 . . . . . . . 8  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  ->  dom inl  =  _V )
466, 45ax-mp 5 . . . . . . 7  |-  dom inl  =  _V
4744, 46eleqtrrdi 2233 . . . . . 6  |-  ( ph  ->  A  e.  dom inl )
4847, 15jctil 310 . . . . 5  |-  ( ph  ->  ( Fun inl  /\  A  e. 
dom inl ) )
49 funfvima 5649 . . . . 5  |-  ( ( Fun inl  /\  A  e.  dom inl )  ->  ( A  e.  B  ->  (inl `  A )  e.  (inl " B ) ) )
5048, 43, 49sylc 62 . . . 4  |-  ( ph  ->  (inl `  A )  e.  (inl " B ) )
51 fvun1 5487 . . . 4  |-  ( ( ( F  o.  `'inl )  Fn  (inl " B
)  /\  ( G  o.  `'inr )  Fn  (inr " dom  G )  /\  ( ( (inl " B )  i^i  (inr " dom  G ) )  =  (/)  /\  (inl `  A )  e.  (inl " B ) ) )  ->  ( ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) `  (inl `  A ) )  =  ( ( F  o.  `'inl ) `  (inl `  A ) ) )
5226, 40, 42, 50, 51syl112anc 1220 . . 3  |-  ( ph  ->  ( ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) `  (inl `  A ) )  =  ( ( F  o.  `'inl ) `  (inl `  A ) ) )
532, 52syl5eq 2184 . 2  |-  ( ph  ->  (case ( F ,  G ) `  (inl `  A ) )  =  ( ( F  o.  `'inl ) `  (inl `  A ) ) )
54 f1ofn 5368 . . . 4  |-  ( `'inl
: ( { (/) }  X.  _V ) -1-1-onto-> _V  ->  `'inl 
Fn  ( { (/) }  X.  _V ) )
558, 54ax-mp 5 . . 3  |-  `'inl  Fn  ( { (/) }  X.  _V )
56 f1of 5367 . . . . . 6  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  -> inl : _V --> ( {
(/) }  X.  _V )
)
576, 56ax-mp 5 . . . . 5  |- inl : _V --> ( { (/) }  X.  _V )
5857a1i 9 . . . 4  |-  ( ph  -> inl : _V --> ( {
(/) }  X.  _V )
)
5958, 44ffvelrnd 5556 . . 3  |-  ( ph  ->  (inl `  A )  e.  ( { (/) }  X.  _V ) )
60 fvco2 5490 . . 3  |-  ( ( `'inl  Fn  ( { (/) }  X.  _V )  /\  (inl `  A )  e.  ( { (/) }  X.  _V ) )  ->  (
( F  o.  `'inl ) `  (inl `  A
) )  =  ( F `  ( `'inl `  (inl `  A )
) ) )
6155, 59, 60sylancr 410 . 2  |-  ( ph  ->  ( ( F  o.  `'inl ) `  (inl `  A ) )  =  ( F `  ( `'inl `  (inl `  A
) ) ) )
62 f1ocnvfv1 5678 . . . 4  |-  ( (inl : _V -1-1-onto-> ( { (/) }  X.  _V )  /\  A  e. 
_V )  ->  ( `'inl `  (inl `  A
) )  =  A )
636, 44, 62sylancr 410 . . 3  |-  ( ph  ->  ( `'inl `  (inl `  A ) )  =  A )
6463fveq2d 5425 . 2  |-  ( ph  ->  ( F `  ( `'inl `  (inl `  A
) ) )  =  ( F `  A
) )
6553, 61, 643eqtrd 2176 1  |-  ( ph  ->  (case ( F ,  G ) `  (inl `  A ) )  =  ( F `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2686    u. cun 3069    i^i cin 3070   (/)c0 3363   {csn 3527   <.cop 3530    X. cxp 4537   `'ccnv 4538   dom cdm 4539   "cima 4542    o. ccom 4543   Rel wrel 4544   Fun wfun 5117    Fn wfn 5118   -->wf 5119   -1-1-onto->wf1o 5122   ` cfv 5123   1oc1o 6306  inlcinl 6930  inrcinr 6931  casecdjucase 6968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-inl 6932  df-inr 6933  df-case 6969
This theorem is referenced by:  omp1eomlem  6979  ctm  6994
  Copyright terms: Public domain W3C validator