![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ofn | Unicode version |
Description: A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1ofn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of 5463 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ffn 5367 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-f 5222 df-f1 5223 df-f1o 5225 |
This theorem is referenced by: f1ofun 5465 f1odm 5467 isocnv2 5816 isoini 5822 isoselem 5824 bren 6750 en1 6802 xpen 6848 phplem4 6858 phplem4on 6870 dif1en 6882 fiintim 6931 supisolem 7010 ordiso2 7037 inresflem 7062 eldju 7070 caseinl 7093 caseinr 7094 enomnilem 7139 enmkvlem 7162 enwomnilem 7170 iseqf1olemnab 10491 hashfacen 10819 fprodssdc 11601 phimullem 12228 |
Copyright terms: Public domain | W3C validator |