![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ofn | Unicode version |
Description: A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1ofn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of 5253 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ffn 5161 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 df-f 5019 df-f1 5020 df-f1o 5022 |
This theorem is referenced by: f1ofun 5255 f1odm 5257 isocnv2 5591 isoini 5597 isoselem 5599 bren 6462 en1 6514 xpen 6559 phplem4 6569 phplem4on 6581 dif1en 6593 fiintim 6637 supisolem 6701 ordiso2 6726 inresflem 6750 eldju 6757 enomnilem 6792 iseqf1olemnab 9913 hashfacen 10237 phimullem 11475 |
Copyright terms: Public domain | W3C validator |