| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1opw2 | Unicode version | ||
| Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 6152 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| f1opw2.1 |
|
| f1opw2.2 |
|
| f1opw2.3 |
|
| Ref | Expression |
|---|---|
| f1opw2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 |
. 2
| |
| 2 | imassrn 5032 |
. . . . 5
| |
| 3 | f1opw2.1 |
. . . . . . 7
| |
| 4 | f1ofo 5528 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | forn 5500 |
. . . . . 6
| |
| 7 | 5, 6 | syl 14 |
. . . . 5
|
| 8 | 2, 7 | sseqtrid 3242 |
. . . 4
|
| 9 | f1opw2.3 |
. . . . 5
| |
| 10 | elpwg 3623 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 8, 11 | mpbird 167 |
. . 3
|
| 13 | 12 | adantr 276 |
. 2
|
| 14 | imassrn 5032 |
. . . . 5
| |
| 15 | dfdm4 4869 |
. . . . . 6
| |
| 16 | f1odm 5525 |
. . . . . . 7
| |
| 17 | 3, 16 | syl 14 |
. . . . . 6
|
| 18 | 15, 17 | eqtr3id 2251 |
. . . . 5
|
| 19 | 14, 18 | sseqtrid 3242 |
. . . 4
|
| 20 | f1opw2.2 |
. . . . 5
| |
| 21 | elpwg 3623 |
. . . . 5
| |
| 22 | 20, 21 | syl 14 |
. . . 4
|
| 23 | 19, 22 | mpbird 167 |
. . 3
|
| 24 | 23 | adantr 276 |
. 2
|
| 25 | elpwi 3624 |
. . . . . . 7
| |
| 26 | 25 | adantl 277 |
. . . . . 6
|
| 27 | foimacnv 5539 |
. . . . . 6
| |
| 28 | 5, 26, 27 | syl2an 289 |
. . . . 5
|
| 29 | 28 | eqcomd 2210 |
. . . 4
|
| 30 | imaeq2 5017 |
. . . . 5
| |
| 31 | 30 | eqeq2d 2216 |
. . . 4
|
| 32 | 29, 31 | syl5ibrcom 157 |
. . 3
|
| 33 | f1of1 5520 |
. . . . . . 7
| |
| 34 | 3, 33 | syl 14 |
. . . . . 6
|
| 35 | elpwi 3624 |
. . . . . . 7
| |
| 36 | 35 | adantr 276 |
. . . . . 6
|
| 37 | f1imacnv 5538 |
. . . . . 6
| |
| 38 | 34, 36, 37 | syl2an 289 |
. . . . 5
|
| 39 | 38 | eqcomd 2210 |
. . . 4
|
| 40 | imaeq2 5017 |
. . . . 5
| |
| 41 | 40 | eqeq2d 2216 |
. . . 4
|
| 42 | 39, 41 | syl5ibrcom 157 |
. . 3
|
| 43 | 32, 42 | impbid 129 |
. 2
|
| 44 | 1, 13, 24, 43 | f1o2d 6150 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 |
| This theorem is referenced by: f1opw 6152 |
| Copyright terms: Public domain | W3C validator |