| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1opw2 | Unicode version | ||
| Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 6176 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| f1opw2.1 |
|
| f1opw2.2 |
|
| f1opw2.3 |
|
| Ref | Expression |
|---|---|
| f1opw2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. 2
| |
| 2 | imassrn 5052 |
. . . . 5
| |
| 3 | f1opw2.1 |
. . . . . . 7
| |
| 4 | f1ofo 5551 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | forn 5523 |
. . . . . 6
| |
| 7 | 5, 6 | syl 14 |
. . . . 5
|
| 8 | 2, 7 | sseqtrid 3251 |
. . . 4
|
| 9 | f1opw2.3 |
. . . . 5
| |
| 10 | elpwg 3634 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 8, 11 | mpbird 167 |
. . 3
|
| 13 | 12 | adantr 276 |
. 2
|
| 14 | imassrn 5052 |
. . . . 5
| |
| 15 | dfdm4 4889 |
. . . . . 6
| |
| 16 | f1odm 5548 |
. . . . . . 7
| |
| 17 | 3, 16 | syl 14 |
. . . . . 6
|
| 18 | 15, 17 | eqtr3id 2254 |
. . . . 5
|
| 19 | 14, 18 | sseqtrid 3251 |
. . . 4
|
| 20 | f1opw2.2 |
. . . . 5
| |
| 21 | elpwg 3634 |
. . . . 5
| |
| 22 | 20, 21 | syl 14 |
. . . 4
|
| 23 | 19, 22 | mpbird 167 |
. . 3
|
| 24 | 23 | adantr 276 |
. 2
|
| 25 | elpwi 3635 |
. . . . . . 7
| |
| 26 | 25 | adantl 277 |
. . . . . 6
|
| 27 | foimacnv 5562 |
. . . . . 6
| |
| 28 | 5, 26, 27 | syl2an 289 |
. . . . 5
|
| 29 | 28 | eqcomd 2213 |
. . . 4
|
| 30 | imaeq2 5037 |
. . . . 5
| |
| 31 | 30 | eqeq2d 2219 |
. . . 4
|
| 32 | 29, 31 | syl5ibrcom 157 |
. . 3
|
| 33 | f1of1 5543 |
. . . . . . 7
| |
| 34 | 3, 33 | syl 14 |
. . . . . 6
|
| 35 | elpwi 3635 |
. . . . . . 7
| |
| 36 | 35 | adantr 276 |
. . . . . 6
|
| 37 | f1imacnv 5561 |
. . . . . 6
| |
| 38 | 34, 36, 37 | syl2an 289 |
. . . . 5
|
| 39 | 38 | eqcomd 2213 |
. . . 4
|
| 40 | imaeq2 5037 |
. . . . 5
| |
| 41 | 40 | eqeq2d 2219 |
. . . 4
|
| 42 | 39, 41 | syl5ibrcom 157 |
. . 3
|
| 43 | 32, 42 | impbid 129 |
. 2
|
| 44 | 1, 13, 24, 43 | f1o2d 6174 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 |
| This theorem is referenced by: f1opw 6176 |
| Copyright terms: Public domain | W3C validator |