ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1opw2 Unicode version

Theorem f1opw2 6175
Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 6176 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
f1opw2.1  |-  ( ph  ->  F : A -1-1-onto-> B )
f1opw2.2  |-  ( ph  ->  ( `' F "
a )  e.  _V )
f1opw2.3  |-  ( ph  ->  ( F " b
)  e.  _V )
Assertion
Ref Expression
f1opw2  |-  ( ph  ->  ( b  e.  ~P A  |->  ( F "
b ) ) : ~P A -1-1-onto-> ~P B )
Distinct variable groups:    a, b, A    B, a, b    F, a, b    ph, a, b

Proof of Theorem f1opw2
StepHypRef Expression
1 eqid 2207 . 2  |-  ( b  e.  ~P A  |->  ( F " b ) )  =  ( b  e.  ~P A  |->  ( F " b ) )
2 imassrn 5052 . . . . 5  |-  ( F
" b )  C_  ran  F
3 f1opw2.1 . . . . . . 7  |-  ( ph  ->  F : A -1-1-onto-> B )
4 f1ofo 5551 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  F : A -onto-> B )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  F : A -onto-> B
)
6 forn 5523 . . . . . 6  |-  ( F : A -onto-> B  ->  ran  F  =  B )
75, 6syl 14 . . . . 5  |-  ( ph  ->  ran  F  =  B )
82, 7sseqtrid 3251 . . . 4  |-  ( ph  ->  ( F " b
)  C_  B )
9 f1opw2.3 . . . . 5  |-  ( ph  ->  ( F " b
)  e.  _V )
10 elpwg 3634 . . . . 5  |-  ( ( F " b )  e.  _V  ->  (
( F " b
)  e.  ~P B  <->  ( F " b ) 
C_  B ) )
119, 10syl 14 . . . 4  |-  ( ph  ->  ( ( F "
b )  e.  ~P B 
<->  ( F " b
)  C_  B )
)
128, 11mpbird 167 . . 3  |-  ( ph  ->  ( F " b
)  e.  ~P B
)
1312adantr 276 . 2  |-  ( (
ph  /\  b  e.  ~P A )  ->  ( F " b )  e. 
~P B )
14 imassrn 5052 . . . . 5  |-  ( `' F " a ) 
C_  ran  `' F
15 dfdm4 4889 . . . . . 6  |-  dom  F  =  ran  `' F
16 f1odm 5548 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )
173, 16syl 14 . . . . . 6  |-  ( ph  ->  dom  F  =  A )
1815, 17eqtr3id 2254 . . . . 5  |-  ( ph  ->  ran  `' F  =  A )
1914, 18sseqtrid 3251 . . . 4  |-  ( ph  ->  ( `' F "
a )  C_  A
)
20 f1opw2.2 . . . . 5  |-  ( ph  ->  ( `' F "
a )  e.  _V )
21 elpwg 3634 . . . . 5  |-  ( ( `' F " a )  e.  _V  ->  (
( `' F "
a )  e.  ~P A 
<->  ( `' F "
a )  C_  A
) )
2220, 21syl 14 . . . 4  |-  ( ph  ->  ( ( `' F " a )  e.  ~P A 
<->  ( `' F "
a )  C_  A
) )
2319, 22mpbird 167 . . 3  |-  ( ph  ->  ( `' F "
a )  e.  ~P A )
2423adantr 276 . 2  |-  ( (
ph  /\  a  e.  ~P B )  ->  ( `' F " a )  e.  ~P A )
25 elpwi 3635 . . . . . . 7  |-  ( a  e.  ~P B  -> 
a  C_  B )
2625adantl 277 . . . . . 6  |-  ( ( b  e.  ~P A  /\  a  e.  ~P B )  ->  a  C_  B )
27 foimacnv 5562 . . . . . 6  |-  ( ( F : A -onto-> B  /\  a  C_  B )  ->  ( F "
( `' F "
a ) )  =  a )
285, 26, 27syl2an 289 . . . . 5  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  ( F "
( `' F "
a ) )  =  a )
2928eqcomd 2213 . . . 4  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  a  =  ( F " ( `' F " a ) ) )
30 imaeq2 5037 . . . . 5  |-  ( b  =  ( `' F " a )  ->  ( F " b )  =  ( F " ( `' F " a ) ) )
3130eqeq2d 2219 . . . 4  |-  ( b  =  ( `' F " a )  ->  (
a  =  ( F
" b )  <->  a  =  ( F " ( `' F " a ) ) ) )
3229, 31syl5ibrcom 157 . . 3  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  ( b  =  ( `' F "
a )  ->  a  =  ( F "
b ) ) )
33 f1of1 5543 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  F : A -1-1-> B )
343, 33syl 14 . . . . . 6  |-  ( ph  ->  F : A -1-1-> B
)
35 elpwi 3635 . . . . . . 7  |-  ( b  e.  ~P A  -> 
b  C_  A )
3635adantr 276 . . . . . 6  |-  ( ( b  e.  ~P A  /\  a  e.  ~P B )  ->  b  C_  A )
37 f1imacnv 5561 . . . . . 6  |-  ( ( F : A -1-1-> B  /\  b  C_  A )  ->  ( `' F " ( F " b
) )  =  b )
3834, 36, 37syl2an 289 . . . . 5  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  ( `' F " ( F " b
) )  =  b )
3938eqcomd 2213 . . . 4  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  b  =  ( `' F " ( F
" b ) ) )
40 imaeq2 5037 . . . . 5  |-  ( a  =  ( F "
b )  ->  ( `' F " a )  =  ( `' F " ( F " b
) ) )
4140eqeq2d 2219 . . . 4  |-  ( a  =  ( F "
b )  ->  (
b  =  ( `' F " a )  <-> 
b  =  ( `' F " ( F
" b ) ) ) )
4239, 41syl5ibrcom 157 . . 3  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  ( a  =  ( F " b
)  ->  b  =  ( `' F " a ) ) )
4332, 42impbid 129 . 2  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  ( b  =  ( `' F "
a )  <->  a  =  ( F " b ) ) )
441, 13, 24, 43f1o2d 6174 1  |-  ( ph  ->  ( b  e.  ~P A  |->  ( F "
b ) ) : ~P A -1-1-onto-> ~P B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776    C_ wss 3174   ~Pcpw 3626    |-> cmpt 4121   `'ccnv 4692   dom cdm 4693   ran crn 4694   "cima 4696   -1-1->wf1 5287   -onto->wfo 5288   -1-1-onto->wf1o 5289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297
This theorem is referenced by:  f1opw  6176
  Copyright terms: Public domain W3C validator