Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1opw2 | Unicode version |
Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 6056 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
f1opw2.1 | |
f1opw2.2 | |
f1opw2.3 |
Ref | Expression |
---|---|
f1opw2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . 2 | |
2 | imassrn 4964 | . . . . 5 | |
3 | f1opw2.1 | . . . . . . 7 | |
4 | f1ofo 5449 | . . . . . . 7 | |
5 | 3, 4 | syl 14 | . . . . . 6 |
6 | forn 5423 | . . . . . 6 | |
7 | 5, 6 | syl 14 | . . . . 5 |
8 | 2, 7 | sseqtrid 3197 | . . . 4 |
9 | f1opw2.3 | . . . . 5 | |
10 | elpwg 3574 | . . . . 5 | |
11 | 9, 10 | syl 14 | . . . 4 |
12 | 8, 11 | mpbird 166 | . . 3 |
13 | 12 | adantr 274 | . 2 |
14 | imassrn 4964 | . . . . 5 | |
15 | dfdm4 4803 | . . . . . 6 | |
16 | f1odm 5446 | . . . . . . 7 | |
17 | 3, 16 | syl 14 | . . . . . 6 |
18 | 15, 17 | eqtr3id 2217 | . . . . 5 |
19 | 14, 18 | sseqtrid 3197 | . . . 4 |
20 | f1opw2.2 | . . . . 5 | |
21 | elpwg 3574 | . . . . 5 | |
22 | 20, 21 | syl 14 | . . . 4 |
23 | 19, 22 | mpbird 166 | . . 3 |
24 | 23 | adantr 274 | . 2 |
25 | elpwi 3575 | . . . . . . 7 | |
26 | 25 | adantl 275 | . . . . . 6 |
27 | foimacnv 5460 | . . . . . 6 | |
28 | 5, 26, 27 | syl2an 287 | . . . . 5 |
29 | 28 | eqcomd 2176 | . . . 4 |
30 | imaeq2 4949 | . . . . 5 | |
31 | 30 | eqeq2d 2182 | . . . 4 |
32 | 29, 31 | syl5ibrcom 156 | . . 3 |
33 | f1of1 5441 | . . . . . . 7 | |
34 | 3, 33 | syl 14 | . . . . . 6 |
35 | elpwi 3575 | . . . . . . 7 | |
36 | 35 | adantr 274 | . . . . . 6 |
37 | f1imacnv 5459 | . . . . . 6 | |
38 | 34, 36, 37 | syl2an 287 | . . . . 5 |
39 | 38 | eqcomd 2176 | . . . 4 |
40 | imaeq2 4949 | . . . . 5 | |
41 | 40 | eqeq2d 2182 | . . . 4 |
42 | 39, 41 | syl5ibrcom 156 | . . 3 |
43 | 32, 42 | impbid 128 | . 2 |
44 | 1, 13, 24, 43 | f1o2d 6054 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cvv 2730 wss 3121 cpw 3566 cmpt 4050 ccnv 4610 cdm 4611 crn 4612 cima 4614 wf1 5195 wfo 5196 wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 |
This theorem is referenced by: f1opw 6056 |
Copyright terms: Public domain | W3C validator |