Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1opw2 | Unicode version |
Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 6045 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
f1opw2.1 | |
f1opw2.2 | |
f1opw2.3 |
Ref | Expression |
---|---|
f1opw2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . 2 | |
2 | imassrn 4957 | . . . . 5 | |
3 | f1opw2.1 | . . . . . . 7 | |
4 | f1ofo 5439 | . . . . . . 7 | |
5 | 3, 4 | syl 14 | . . . . . 6 |
6 | forn 5413 | . . . . . 6 | |
7 | 5, 6 | syl 14 | . . . . 5 |
8 | 2, 7 | sseqtrid 3192 | . . . 4 |
9 | f1opw2.3 | . . . . 5 | |
10 | elpwg 3567 | . . . . 5 | |
11 | 9, 10 | syl 14 | . . . 4 |
12 | 8, 11 | mpbird 166 | . . 3 |
13 | 12 | adantr 274 | . 2 |
14 | imassrn 4957 | . . . . 5 | |
15 | dfdm4 4796 | . . . . . 6 | |
16 | f1odm 5436 | . . . . . . 7 | |
17 | 3, 16 | syl 14 | . . . . . 6 |
18 | 15, 17 | eqtr3id 2213 | . . . . 5 |
19 | 14, 18 | sseqtrid 3192 | . . . 4 |
20 | f1opw2.2 | . . . . 5 | |
21 | elpwg 3567 | . . . . 5 | |
22 | 20, 21 | syl 14 | . . . 4 |
23 | 19, 22 | mpbird 166 | . . 3 |
24 | 23 | adantr 274 | . 2 |
25 | elpwi 3568 | . . . . . . 7 | |
26 | 25 | adantl 275 | . . . . . 6 |
27 | foimacnv 5450 | . . . . . 6 | |
28 | 5, 26, 27 | syl2an 287 | . . . . 5 |
29 | 28 | eqcomd 2171 | . . . 4 |
30 | imaeq2 4942 | . . . . 5 | |
31 | 30 | eqeq2d 2177 | . . . 4 |
32 | 29, 31 | syl5ibrcom 156 | . . 3 |
33 | f1of1 5431 | . . . . . . 7 | |
34 | 3, 33 | syl 14 | . . . . . 6 |
35 | elpwi 3568 | . . . . . . 7 | |
36 | 35 | adantr 274 | . . . . . 6 |
37 | f1imacnv 5449 | . . . . . 6 | |
38 | 34, 36, 37 | syl2an 287 | . . . . 5 |
39 | 38 | eqcomd 2171 | . . . 4 |
40 | imaeq2 4942 | . . . . 5 | |
41 | 40 | eqeq2d 2177 | . . . 4 |
42 | 39, 41 | syl5ibrcom 156 | . . 3 |
43 | 32, 42 | impbid 128 | . 2 |
44 | 1, 13, 24, 43 | f1o2d 6043 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 wss 3116 cpw 3559 cmpt 4043 ccnv 4603 cdm 4604 crn 4605 cima 4607 wf1 5185 wfo 5186 wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 |
This theorem is referenced by: f1opw 6045 |
Copyright terms: Public domain | W3C validator |