| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1opw2 | Unicode version | ||
| Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 6134 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| f1opw2.1 |
|
| f1opw2.2 |
|
| f1opw2.3 |
|
| Ref | Expression |
|---|---|
| f1opw2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. 2
| |
| 2 | imassrn 5021 |
. . . . 5
| |
| 3 | f1opw2.1 |
. . . . . . 7
| |
| 4 | f1ofo 5514 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | forn 5486 |
. . . . . 6
| |
| 7 | 5, 6 | syl 14 |
. . . . 5
|
| 8 | 2, 7 | sseqtrid 3234 |
. . . 4
|
| 9 | f1opw2.3 |
. . . . 5
| |
| 10 | elpwg 3614 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 8, 11 | mpbird 167 |
. . 3
|
| 13 | 12 | adantr 276 |
. 2
|
| 14 | imassrn 5021 |
. . . . 5
| |
| 15 | dfdm4 4859 |
. . . . . 6
| |
| 16 | f1odm 5511 |
. . . . . . 7
| |
| 17 | 3, 16 | syl 14 |
. . . . . 6
|
| 18 | 15, 17 | eqtr3id 2243 |
. . . . 5
|
| 19 | 14, 18 | sseqtrid 3234 |
. . . 4
|
| 20 | f1opw2.2 |
. . . . 5
| |
| 21 | elpwg 3614 |
. . . . 5
| |
| 22 | 20, 21 | syl 14 |
. . . 4
|
| 23 | 19, 22 | mpbird 167 |
. . 3
|
| 24 | 23 | adantr 276 |
. 2
|
| 25 | elpwi 3615 |
. . . . . . 7
| |
| 26 | 25 | adantl 277 |
. . . . . 6
|
| 27 | foimacnv 5525 |
. . . . . 6
| |
| 28 | 5, 26, 27 | syl2an 289 |
. . . . 5
|
| 29 | 28 | eqcomd 2202 |
. . . 4
|
| 30 | imaeq2 5006 |
. . . . 5
| |
| 31 | 30 | eqeq2d 2208 |
. . . 4
|
| 32 | 29, 31 | syl5ibrcom 157 |
. . 3
|
| 33 | f1of1 5506 |
. . . . . . 7
| |
| 34 | 3, 33 | syl 14 |
. . . . . 6
|
| 35 | elpwi 3615 |
. . . . . . 7
| |
| 36 | 35 | adantr 276 |
. . . . . 6
|
| 37 | f1imacnv 5524 |
. . . . . 6
| |
| 38 | 34, 36, 37 | syl2an 289 |
. . . . 5
|
| 39 | 38 | eqcomd 2202 |
. . . 4
|
| 40 | imaeq2 5006 |
. . . . 5
| |
| 41 | 40 | eqeq2d 2208 |
. . . 4
|
| 42 | 39, 41 | syl5ibrcom 157 |
. . 3
|
| 43 | 32, 42 | impbid 129 |
. 2
|
| 44 | 1, 13, 24, 43 | f1o2d 6132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 |
| This theorem is referenced by: f1opw 6134 |
| Copyright terms: Public domain | W3C validator |