Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > phplem4on | Unicode version |
Description: Equinumerosity of successors of an ordinal and a natural number implies equinumerosity of the originals. (Contributed by Jim Kingdon, 5-Sep-2021.) |
Ref | Expression |
---|---|
phplem4on |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 6713 | . . . . 5 | |
2 | 1 | biimpi 119 | . . . 4 |
3 | 2 | adantl 275 | . . 3 |
4 | f1of1 5431 | . . . . . . . 8 | |
5 | 4 | adantl 275 | . . . . . . 7 |
6 | peano2 4572 | . . . . . . . . 9 | |
7 | nnon 4587 | . . . . . . . . 9 | |
8 | 6, 7 | syl 14 | . . . . . . . 8 |
9 | 8 | ad3antlr 485 | . . . . . . 7 |
10 | sssucid 4393 | . . . . . . . 8 | |
11 | 10 | a1i 9 | . . . . . . 7 |
12 | simplll 523 | . . . . . . 7 | |
13 | f1imaen2g 6759 | . . . . . . 7 | |
14 | 5, 9, 11, 12, 13 | syl22anc 1229 | . . . . . 6 |
15 | 14 | ensymd 6749 | . . . . 5 |
16 | eloni 4353 | . . . . . . . . 9 | |
17 | orddif 4524 | . . . . . . . . 9 | |
18 | 16, 17 | syl 14 | . . . . . . . 8 |
19 | 18 | imaeq2d 4946 | . . . . . . 7 |
20 | 19 | ad3antrrr 484 | . . . . . 6 |
21 | f1ofn 5433 | . . . . . . . . . 10 | |
22 | 21 | adantl 275 | . . . . . . . . 9 |
23 | sucidg 4394 | . . . . . . . . . 10 | |
24 | 12, 23 | syl 14 | . . . . . . . . 9 |
25 | fnsnfv 5545 | . . . . . . . . 9 | |
26 | 22, 24, 25 | syl2anc 409 | . . . . . . . 8 |
27 | 26 | difeq2d 3240 | . . . . . . 7 |
28 | imadmrn 4956 | . . . . . . . . . . 11 | |
29 | 28 | eqcomi 2169 | . . . . . . . . . 10 |
30 | f1ofo 5439 | . . . . . . . . . . 11 | |
31 | forn 5413 | . . . . . . . . . . 11 | |
32 | 30, 31 | syl 14 | . . . . . . . . . 10 |
33 | f1odm 5436 | . . . . . . . . . . 11 | |
34 | 33 | imaeq2d 4946 | . . . . . . . . . 10 |
35 | 29, 32, 34 | 3eqtr3a 2223 | . . . . . . . . 9 |
36 | 35 | difeq1d 3239 | . . . . . . . 8 |
37 | 36 | adantl 275 | . . . . . . 7 |
38 | dff1o3 5438 | . . . . . . . . . 10 | |
39 | 38 | simprbi 273 | . . . . . . . . 9 |
40 | imadif 5268 | . . . . . . . . 9 | |
41 | 39, 40 | syl 14 | . . . . . . . 8 |
42 | 41 | adantl 275 | . . . . . . 7 |
43 | 27, 37, 42 | 3eqtr4rd 2209 | . . . . . 6 |
44 | 20, 43 | eqtrd 2198 | . . . . 5 |
45 | 15, 44 | breqtrd 4008 | . . . 4 |
46 | simpllr 524 | . . . . . 6 | |
47 | fnfvelrn 5617 | . . . . . . . 8 | |
48 | 22, 24, 47 | syl2anc 409 | . . . . . . 7 |
49 | 31 | eleq2d 2236 | . . . . . . . . 9 |
50 | 30, 49 | syl 14 | . . . . . . . 8 |
51 | 50 | adantl 275 | . . . . . . 7 |
52 | 48, 51 | mpbid 146 | . . . . . 6 |
53 | phplem3g 6822 | . . . . . 6 | |
54 | 46, 52, 53 | syl2anc 409 | . . . . 5 |
55 | 54 | ensymd 6749 | . . . 4 |
56 | entr 6750 | . . . 4 | |
57 | 45, 55, 56 | syl2anc 409 | . . 3 |
58 | 3, 57 | exlimddv 1886 | . 2 |
59 | 58 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cdif 3113 wss 3116 csn 3576 class class class wbr 3982 word 4340 con0 4341 csuc 4343 com 4567 ccnv 4603 cdm 4604 crn 4605 cima 4607 wfun 5182 wfn 5183 wf1 5185 wfo 5186 wf1o 5187 cfv 5188 cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |