| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phplem4on | Unicode version | ||
| Description: Equinumerosity of successors of an ordinal and a natural number implies equinumerosity of the originals. (Contributed by Jim Kingdon, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| phplem4on |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 6848 |
. . . . 5
| |
| 2 | 1 | biimpi 120 |
. . . 4
|
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | f1of1 5533 |
. . . . . . . 8
| |
| 5 | 4 | adantl 277 |
. . . . . . 7
|
| 6 | peano2 4651 |
. . . . . . . . 9
| |
| 7 | nnon 4666 |
. . . . . . . . 9
| |
| 8 | 6, 7 | syl 14 |
. . . . . . . 8
|
| 9 | 8 | ad3antlr 493 |
. . . . . . 7
|
| 10 | sssucid 4470 |
. . . . . . . 8
| |
| 11 | 10 | a1i 9 |
. . . . . . 7
|
| 12 | simplll 533 |
. . . . . . 7
| |
| 13 | f1imaen2g 6898 |
. . . . . . 7
| |
| 14 | 5, 9, 11, 12, 13 | syl22anc 1251 |
. . . . . 6
|
| 15 | 14 | ensymd 6888 |
. . . . 5
|
| 16 | eloni 4430 |
. . . . . . . . 9
| |
| 17 | orddif 4603 |
. . . . . . . . 9
| |
| 18 | 16, 17 | syl 14 |
. . . . . . . 8
|
| 19 | 18 | imaeq2d 5031 |
. . . . . . 7
|
| 20 | 19 | ad3antrrr 492 |
. . . . . 6
|
| 21 | f1ofn 5535 |
. . . . . . . . . 10
| |
| 22 | 21 | adantl 277 |
. . . . . . . . 9
|
| 23 | sucidg 4471 |
. . . . . . . . . 10
| |
| 24 | 12, 23 | syl 14 |
. . . . . . . . 9
|
| 25 | fnsnfv 5651 |
. . . . . . . . 9
| |
| 26 | 22, 24, 25 | syl2anc 411 |
. . . . . . . 8
|
| 27 | 26 | difeq2d 3295 |
. . . . . . 7
|
| 28 | imadmrn 5041 |
. . . . . . . . . . 11
| |
| 29 | 28 | eqcomi 2210 |
. . . . . . . . . 10
|
| 30 | f1ofo 5541 |
. . . . . . . . . . 11
| |
| 31 | forn 5513 |
. . . . . . . . . . 11
| |
| 32 | 30, 31 | syl 14 |
. . . . . . . . . 10
|
| 33 | f1odm 5538 |
. . . . . . . . . . 11
| |
| 34 | 33 | imaeq2d 5031 |
. . . . . . . . . 10
|
| 35 | 29, 32, 34 | 3eqtr3a 2263 |
. . . . . . . . 9
|
| 36 | 35 | difeq1d 3294 |
. . . . . . . 8
|
| 37 | 36 | adantl 277 |
. . . . . . 7
|
| 38 | dff1o3 5540 |
. . . . . . . . . 10
| |
| 39 | 38 | simprbi 275 |
. . . . . . . . 9
|
| 40 | imadif 5363 |
. . . . . . . . 9
| |
| 41 | 39, 40 | syl 14 |
. . . . . . . 8
|
| 42 | 41 | adantl 277 |
. . . . . . 7
|
| 43 | 27, 37, 42 | 3eqtr4rd 2250 |
. . . . . 6
|
| 44 | 20, 43 | eqtrd 2239 |
. . . . 5
|
| 45 | 15, 44 | breqtrd 4077 |
. . . 4
|
| 46 | simpllr 534 |
. . . . . 6
| |
| 47 | fnfvelrn 5725 |
. . . . . . . 8
| |
| 48 | 22, 24, 47 | syl2anc 411 |
. . . . . . 7
|
| 49 | 31 | eleq2d 2276 |
. . . . . . . . 9
|
| 50 | 30, 49 | syl 14 |
. . . . . . . 8
|
| 51 | 50 | adantl 277 |
. . . . . . 7
|
| 52 | 48, 51 | mpbid 147 |
. . . . . 6
|
| 53 | phplem3g 6968 |
. . . . . 6
| |
| 54 | 46, 52, 53 | syl2anc 411 |
. . . . 5
|
| 55 | 54 | ensymd 6888 |
. . . 4
|
| 56 | entr 6889 |
. . . 4
| |
| 57 | 45, 55, 56 | syl2anc 411 |
. . 3
|
| 58 | 3, 57 | exlimddv 1923 |
. 2
|
| 59 | 58 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-er 6633 df-en 6841 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |