Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > phplem4on | Unicode version |
Description: Equinumerosity of successors of an ordinal and a natural number implies equinumerosity of the originals. (Contributed by Jim Kingdon, 5-Sep-2021.) |
Ref | Expression |
---|---|
phplem4on |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 6725 | . . . . 5 | |
2 | 1 | biimpi 119 | . . . 4 |
3 | 2 | adantl 275 | . . 3 |
4 | f1of1 5441 | . . . . . . . 8 | |
5 | 4 | adantl 275 | . . . . . . 7 |
6 | peano2 4579 | . . . . . . . . 9 | |
7 | nnon 4594 | . . . . . . . . 9 | |
8 | 6, 7 | syl 14 | . . . . . . . 8 |
9 | 8 | ad3antlr 490 | . . . . . . 7 |
10 | sssucid 4400 | . . . . . . . 8 | |
11 | 10 | a1i 9 | . . . . . . 7 |
12 | simplll 528 | . . . . . . 7 | |
13 | f1imaen2g 6771 | . . . . . . 7 | |
14 | 5, 9, 11, 12, 13 | syl22anc 1234 | . . . . . 6 |
15 | 14 | ensymd 6761 | . . . . 5 |
16 | eloni 4360 | . . . . . . . . 9 | |
17 | orddif 4531 | . . . . . . . . 9 | |
18 | 16, 17 | syl 14 | . . . . . . . 8 |
19 | 18 | imaeq2d 4953 | . . . . . . 7 |
20 | 19 | ad3antrrr 489 | . . . . . 6 |
21 | f1ofn 5443 | . . . . . . . . . 10 | |
22 | 21 | adantl 275 | . . . . . . . . 9 |
23 | sucidg 4401 | . . . . . . . . . 10 | |
24 | 12, 23 | syl 14 | . . . . . . . . 9 |
25 | fnsnfv 5555 | . . . . . . . . 9 | |
26 | 22, 24, 25 | syl2anc 409 | . . . . . . . 8 |
27 | 26 | difeq2d 3245 | . . . . . . 7 |
28 | imadmrn 4963 | . . . . . . . . . . 11 | |
29 | 28 | eqcomi 2174 | . . . . . . . . . 10 |
30 | f1ofo 5449 | . . . . . . . . . . 11 | |
31 | forn 5423 | . . . . . . . . . . 11 | |
32 | 30, 31 | syl 14 | . . . . . . . . . 10 |
33 | f1odm 5446 | . . . . . . . . . . 11 | |
34 | 33 | imaeq2d 4953 | . . . . . . . . . 10 |
35 | 29, 32, 34 | 3eqtr3a 2227 | . . . . . . . . 9 |
36 | 35 | difeq1d 3244 | . . . . . . . 8 |
37 | 36 | adantl 275 | . . . . . . 7 |
38 | dff1o3 5448 | . . . . . . . . . 10 | |
39 | 38 | simprbi 273 | . . . . . . . . 9 |
40 | imadif 5278 | . . . . . . . . 9 | |
41 | 39, 40 | syl 14 | . . . . . . . 8 |
42 | 41 | adantl 275 | . . . . . . 7 |
43 | 27, 37, 42 | 3eqtr4rd 2214 | . . . . . 6 |
44 | 20, 43 | eqtrd 2203 | . . . . 5 |
45 | 15, 44 | breqtrd 4015 | . . . 4 |
46 | simpllr 529 | . . . . . 6 | |
47 | fnfvelrn 5628 | . . . . . . . 8 | |
48 | 22, 24, 47 | syl2anc 409 | . . . . . . 7 |
49 | 31 | eleq2d 2240 | . . . . . . . . 9 |
50 | 30, 49 | syl 14 | . . . . . . . 8 |
51 | 50 | adantl 275 | . . . . . . 7 |
52 | 48, 51 | mpbid 146 | . . . . . 6 |
53 | phplem3g 6834 | . . . . . 6 | |
54 | 46, 52, 53 | syl2anc 409 | . . . . 5 |
55 | 54 | ensymd 6761 | . . . 4 |
56 | entr 6762 | . . . 4 | |
57 | 45, 55, 56 | syl2anc 409 | . . 3 |
58 | 3, 57 | exlimddv 1891 | . 2 |
59 | 58 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cdif 3118 wss 3121 csn 3583 class class class wbr 3989 word 4347 con0 4348 csuc 4350 com 4574 ccnv 4610 cdm 4611 crn 4612 cima 4614 wfun 5192 wfn 5193 wf1 5195 wfo 5196 wf1o 5197 cfv 5198 cen 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-er 6513 df-en 6719 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |