ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4on Unicode version

Theorem phplem4on 6946
Description: Equinumerosity of successors of an ordinal and a natural number implies equinumerosity of the originals. (Contributed by Jim Kingdon, 5-Sep-2021.)
Assertion
Ref Expression
phplem4on  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( suc  A  ~~  suc  B  ->  A  ~~  B ) )

Proof of Theorem phplem4on
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 6824 . . . . 5  |-  ( suc 
A  ~~  suc  B  <->  E. f 
f : suc  A -1-1-onto-> suc  B )
21biimpi 120 . . . 4  |-  ( suc 
A  ~~  suc  B  ->  E. f  f : suc  A -1-1-onto-> suc  B )
32adantl 277 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  om )  /\  suc  A  ~~  suc  B )  ->  E. f 
f : suc  A -1-1-onto-> suc  B )
4 f1of1 5515 . . . . . . . 8  |-  ( f : suc  A -1-1-onto-> suc  B  ->  f : suc  A -1-1-> suc 
B )
54adantl 277 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  f : suc  A -1-1-> suc  B )
6 peano2 4641 . . . . . . . . 9  |-  ( B  e.  om  ->  suc  B  e.  om )
7 nnon 4656 . . . . . . . . 9  |-  ( suc 
B  e.  om  ->  suc 
B  e.  On )
86, 7syl 14 . . . . . . . 8  |-  ( B  e.  om  ->  suc  B  e.  On )
98ad3antlr 493 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  suc  B  e.  On )
10 sssucid 4460 . . . . . . . 8  |-  A  C_  suc  A
1110a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  A  C_  suc  A )
12 simplll 533 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  A  e.  On )
13 f1imaen2g 6870 . . . . . . 7  |-  ( ( ( f : suc  A
-1-1-> suc  B  /\  suc  B  e.  On )  /\  ( A  C_  suc  A  /\  A  e.  On ) )  ->  (
f " A ) 
~~  A )
145, 9, 11, 12, 13syl22anc 1250 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  ( f " A )  ~~  A
)
1514ensymd 6860 . . . . 5  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  A  ~~  ( f " A
) )
16 eloni 4420 . . . . . . . . 9  |-  ( A  e.  On  ->  Ord  A )
17 orddif 4593 . . . . . . . . 9  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
1816, 17syl 14 . . . . . . . 8  |-  ( A  e.  On  ->  A  =  ( suc  A  \  { A } ) )
1918imaeq2d 5019 . . . . . . 7  |-  ( A  e.  On  ->  (
f " A )  =  ( f "
( suc  A  \  { A } ) ) )
2019ad3antrrr 492 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  ( f " A )  =  ( f " ( suc 
A  \  { A } ) ) )
21 f1ofn 5517 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  f  Fn  suc  A
)
2221adantl 277 . . . . . . . . 9  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  f  Fn  suc  A )
23 sucidg 4461 . . . . . . . . . 10  |-  ( A  e.  On  ->  A  e.  suc  A )
2412, 23syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  A  e.  suc  A )
25 fnsnfv 5632 . . . . . . . . 9  |-  ( ( f  Fn  suc  A  /\  A  e.  suc  A )  ->  { (
f `  A ) }  =  ( f " { A } ) )
2622, 24, 25syl2anc 411 . . . . . . . 8  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  { (
f `  A ) }  =  ( f " { A } ) )
2726difeq2d 3290 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  ( (
f " suc  A
)  \  { (
f `  A ) } )  =  ( ( f " suc  A )  \  ( f
" { A }
) ) )
28 imadmrn 5029 . . . . . . . . . . 11  |-  ( f
" dom  f )  =  ran  f
2928eqcomi 2208 . . . . . . . . . 10  |-  ran  f  =  ( f " dom  f )
30 f1ofo 5523 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  ->  f : suc  A -onto-> suc  B )
31 forn 5495 . . . . . . . . . . 11  |-  ( f : suc  A -onto-> suc  B  ->  ran  f  =  suc  B )
3230, 31syl 14 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ran  f  =  suc  B )
33 f1odm 5520 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  ->  dom  f  =  suc  A )
3433imaeq2d 5019 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f " dom  f )  =  ( f " suc  A
) )
3529, 32, 343eqtr3a 2261 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  suc  B  =  ( f " suc  A
) )
3635difeq1d 3289 . . . . . . . 8  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( suc  B  \  { ( f `  A ) } )  =  ( ( f
" suc  A )  \  { ( f `  A ) } ) )
3736adantl 277 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  ( suc  B 
\  { ( f `
 A ) } )  =  ( ( f " suc  A
)  \  { (
f `  A ) } ) )
38 dff1o3 5522 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  <->  ( f : suc  A -onto-> suc  B  /\  Fun  `' f ) )
3938simprbi 275 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  Fun  `' f )
40 imadif 5348 . . . . . . . . 9  |-  ( Fun  `' f  ->  ( f
" ( suc  A  \  { A } ) )  =  ( ( f " suc  A
)  \  ( f " { A } ) ) )
4139, 40syl 14 . . . . . . . 8  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f " ( suc  A  \  { A } ) )  =  ( ( f " suc  A )  \  (
f " { A } ) ) )
4241adantl 277 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  ( f " ( suc  A  \  { A } ) )  =  ( ( f " suc  A
)  \  ( f " { A } ) ) )
4327, 37, 423eqtr4rd 2248 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  ( f " ( suc  A  \  { A } ) )  =  ( suc 
B  \  { (
f `  A ) } ) )
4420, 43eqtrd 2237 . . . . 5  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  ( f " A )  =  ( suc  B  \  {
( f `  A
) } ) )
4515, 44breqtrd 4069 . . . 4  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  A  ~~  ( suc  B  \  {
( f `  A
) } ) )
46 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  B  e.  om )
47 fnfvelrn 5706 . . . . . . . 8  |-  ( ( f  Fn  suc  A  /\  A  e.  suc  A )  ->  ( f `  A )  e.  ran  f )
4822, 24, 47syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  ( f `  A )  e.  ran  f )
4931eleq2d 2274 . . . . . . . . 9  |-  ( f : suc  A -onto-> suc  B  ->  ( ( f `
 A )  e. 
ran  f  <->  ( f `  A )  e.  suc  B ) )
5030, 49syl 14 . . . . . . . 8  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( ( f `  A )  e.  ran  f 
<->  ( f `  A
)  e.  suc  B
) )
5150adantl 277 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  ( (
f `  A )  e.  ran  f  <->  ( f `  A )  e.  suc  B ) )
5248, 51mpbid 147 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  ( f `  A )  e.  suc  B )
53 phplem3g 6935 . . . . . 6  |-  ( ( B  e.  om  /\  ( f `  A
)  e.  suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
5446, 52, 53syl2anc 411 . . . . 5  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
5554ensymd 6860 . . . 4  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  ( suc  B 
\  { ( f `
 A ) } )  ~~  B )
56 entr 6861 . . . 4  |-  ( ( A  ~~  ( suc 
B  \  { (
f `  A ) } )  /\  ( suc  B  \  { ( f `  A ) } )  ~~  B
)  ->  A  ~~  B )
5745, 55, 56syl2anc 411 . . 3  |-  ( ( ( ( A  e.  On  /\  B  e. 
om )  /\  suc  A 
~~  suc  B )  /\  f : suc  A -1-1-onto-> suc  B )  ->  A  ~~  B )
583, 57exlimddv 1921 . 2  |-  ( ( ( A  e.  On  /\  B  e.  om )  /\  suc  A  ~~  suc  B )  ->  A  ~~  B )
5958ex 115 1  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( suc  A  ~~  suc  B  ->  A  ~~  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372   E.wex 1514    e. wcel 2175    \ cdif 3162    C_ wss 3165   {csn 3632   class class class wbr 4043   Ord word 4407   Oncon0 4408   suc csuc 4410   omcom 4636   `'ccnv 4672   dom cdm 4673   ran crn 4674   "cima 4676   Fun wfun 5262    Fn wfn 5263   -1-1->wf1 5265   -onto->wfo 5266   -1-1-onto->wf1o 5267   ` cfv 5268    ~~ cen 6815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-er 6610  df-en 6818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator