ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imacnv Unicode version

Theorem f1imacnv 5449
Description: Preimage of an image. (Contributed by NM, 30-Sep-2004.)
Assertion
Ref Expression
f1imacnv  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( `' F " ( F " C
) )  =  C )

Proof of Theorem f1imacnv
StepHypRef Expression
1 resima 4917 . 2  |-  ( ( `' F  |`  ( F
" C ) )
" ( F " C ) )  =  ( `' F "
( F " C
) )
2 df-f1 5193 . . . . . . 7  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
32simprbi 273 . . . . . 6  |-  ( F : A -1-1-> B  ->  Fun  `' F )
43adantr 274 . . . . 5  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  Fun  `' F
)
5 funcnvres 5261 . . . . 5  |-  ( Fun  `' F  ->  `' ( F  |`  C )  =  ( `' F  |`  ( F " C
) ) )
64, 5syl 14 . . . 4  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  `' ( F  |`  C )  =  ( `' F  |`  ( F
" C ) ) )
76imaeq1d 4945 . . 3  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( `' ( F  |`  C ) " ( F " C ) )  =  ( ( `' F  |`  ( F " C
) ) " ( F " C ) ) )
8 f1ores 5447 . . . . 5  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-onto-> ( F " C ) )
9 f1ocnv 5445 . . . . 5  |-  ( ( F  |`  C ) : C -1-1-onto-> ( F " C
)  ->  `' ( F  |`  C ) : ( F " C
)
-1-1-onto-> C )
108, 9syl 14 . . . 4  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  `' ( F  |`  C ) : ( F " C ) -1-1-onto-> C )
11 imadmrn 4956 . . . . 5  |-  ( `' ( F  |`  C )
" dom  `' ( F  |`  C ) )  =  ran  `' ( F  |`  C )
12 f1odm 5436 . . . . . 6  |-  ( `' ( F  |`  C ) : ( F " C ) -1-1-onto-> C  ->  dom  `' ( F  |`  C )  =  ( F " C ) )
1312imaeq2d 4946 . . . . 5  |-  ( `' ( F  |`  C ) : ( F " C ) -1-1-onto-> C  ->  ( `' ( F  |`  C )
" dom  `' ( F  |`  C ) )  =  ( `' ( F  |`  C ) " ( F " C ) ) )
14 f1ofo 5439 . . . . . 6  |-  ( `' ( F  |`  C ) : ( F " C ) -1-1-onto-> C  ->  `' ( F  |`  C ) : ( F " C
) -onto-> C )
15 forn 5413 . . . . . 6  |-  ( `' ( F  |`  C ) : ( F " C ) -onto-> C  ->  ran  `' ( F  |`  C )  =  C )
1614, 15syl 14 . . . . 5  |-  ( `' ( F  |`  C ) : ( F " C ) -1-1-onto-> C  ->  ran  `' ( F  |`  C )  =  C )
1711, 13, 163eqtr3a 2223 . . . 4  |-  ( `' ( F  |`  C ) : ( F " C ) -1-1-onto-> C  ->  ( `' ( F  |`  C )
" ( F " C ) )  =  C )
1810, 17syl 14 . . 3  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( `' ( F  |`  C ) " ( F " C ) )  =  C )
197, 18eqtr3d 2200 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( ( `' F  |`  ( F " C ) ) "
( F " C
) )  =  C )
201, 19eqtr3id 2213 1  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( `' F " ( F " C
) )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    C_ wss 3116   `'ccnv 4603   dom cdm 4604   ran crn 4605    |` cres 4606   "cima 4607   Fun wfun 5182   -->wf 5184   -1-1->wf1 5185   -onto->wfo 5186   -1-1-onto->wf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  f1opw2  6044  ssenen  6817  hmeoopn  12951  hmeocld  12952  hmeontr  12953
  Copyright terms: Public domain W3C validator