ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ofun Unicode version

Theorem f1ofun 5464
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.)
Assertion
Ref Expression
f1ofun  |-  ( F : A -1-1-onto-> B  ->  Fun  F )

Proof of Theorem f1ofun
StepHypRef Expression
1 f1ofn 5463 . 2  |-  ( F : A -1-1-onto-> B  ->  F  Fn  A )
2 fnfun 5314 . 2  |-  ( F  Fn  A  ->  Fun  F )
31, 2syl 14 1  |-  ( F : A -1-1-onto-> B  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5211    Fn wfn 5212   -1-1-onto->wf1o 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5220  df-f 5221  df-f1 5222  df-f1o 5224
This theorem is referenced by:  f1orel  5465  f1oresrab  5682  isose  5822  f1opw  6078  xpcomco  6826  fiintim  6928  f1dmvrnfibi  6943  caseinl  7090  caseinr  7091  ctssdccl  7110  ctssdclemr  7111  fihasheqf1oi  10767  fisumss  11400  ennnfonelemex  12415  ennnfonelemf1  12419  hmeontr  13816
  Copyright terms: Public domain W3C validator