ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ofun Unicode version

Theorem f1ofun 5434
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.)
Assertion
Ref Expression
f1ofun  |-  ( F : A -1-1-onto-> B  ->  Fun  F )

Proof of Theorem f1ofun
StepHypRef Expression
1 f1ofn 5433 . 2  |-  ( F : A -1-1-onto-> B  ->  F  Fn  A )
2 fnfun 5285 . 2  |-  ( F  Fn  A  ->  Fun  F )
31, 2syl 14 1  |-  ( F : A -1-1-onto-> B  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5182    Fn wfn 5183   -1-1-onto->wf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-fn 5191  df-f 5192  df-f1 5193  df-f1o 5195
This theorem is referenced by:  f1orel  5435  f1oresrab  5650  isose  5789  f1opw  6045  xpcomco  6792  fiintim  6894  f1dmvrnfibi  6909  caseinl  7056  caseinr  7057  ctssdccl  7076  ctssdclemr  7077  fihasheqf1oi  10701  fisumss  11333  ennnfonelemex  12347  ennnfonelemf1  12351  hmeontr  12953
  Copyright terms: Public domain W3C validator