ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ofun Unicode version

Theorem f1ofun 5524
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.)
Assertion
Ref Expression
f1ofun  |-  ( F : A -1-1-onto-> B  ->  Fun  F )

Proof of Theorem f1ofun
StepHypRef Expression
1 f1ofn 5523 . 2  |-  ( F : A -1-1-onto-> B  ->  F  Fn  A )
2 fnfun 5371 . 2  |-  ( F  Fn  A  ->  Fun  F )
31, 2syl 14 1  |-  ( F : A -1-1-onto-> B  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5265    Fn wfn 5266   -1-1-onto->wf1o 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5274  df-f 5275  df-f1 5276  df-f1o 5278
This theorem is referenced by:  f1orel  5525  f1oresrab  5745  isose  5890  f1opw  6153  xpcomco  6921  fiintim  7028  f1dmvrnfibi  7046  caseinl  7193  caseinr  7194  ctssdccl  7213  ctssdclemr  7214  fihasheqf1oi  10932  fisumss  11703  ennnfonelemex  12785  ennnfonelemf1  12789  hmeontr  14785
  Copyright terms: Public domain W3C validator