ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ofun Unicode version

Theorem f1ofun 5523
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.)
Assertion
Ref Expression
f1ofun  |-  ( F : A -1-1-onto-> B  ->  Fun  F )

Proof of Theorem f1ofun
StepHypRef Expression
1 f1ofn 5522 . 2  |-  ( F : A -1-1-onto-> B  ->  F  Fn  A )
2 fnfun 5370 . 2  |-  ( F  Fn  A  ->  Fun  F )
31, 2syl 14 1  |-  ( F : A -1-1-onto-> B  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5264    Fn wfn 5265   -1-1-onto->wf1o 5269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5273  df-f 5274  df-f1 5275  df-f1o 5277
This theorem is referenced by:  f1orel  5524  f1oresrab  5744  isose  5889  f1opw  6152  xpcomco  6920  fiintim  7027  f1dmvrnfibi  7045  caseinl  7192  caseinr  7193  ctssdccl  7212  ctssdclemr  7213  fihasheqf1oi  10930  fisumss  11674  ennnfonelemex  12756  ennnfonelemf1  12760  hmeontr  14756
  Copyright terms: Public domain W3C validator