ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oresrab Unicode version

Theorem f1oresrab 5463
Description: Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.)
Hypotheses
Ref Expression
f1oresrab.1  |-  F  =  ( x  e.  A  |->  C )
f1oresrab.2  |-  ( ph  ->  F : A -1-1-onto-> B )
f1oresrab.3  |-  ( (
ph  /\  x  e.  A  /\  y  =  C )  ->  ( ch  <->  ps ) )
Assertion
Ref Expression
f1oresrab  |-  ( ph  ->  ( F  |`  { x  e.  A  |  ps } ) : {
x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
Distinct variable groups:    x, y, A   
x, B, y    y, C    ph, x, y    ps, y    ch, x
Allowed substitution hints:    ps( x)    ch( y)    C( x)    F( x, y)

Proof of Theorem f1oresrab
StepHypRef Expression
1 f1oresrab.2 . . . 4  |-  ( ph  ->  F : A -1-1-onto-> B )
2 f1ofun 5255 . . . 4  |-  ( F : A -1-1-onto-> B  ->  Fun  F )
3 funcnvcnv 5073 . . . 4  |-  ( Fun 
F  ->  Fun  `' `' F )
41, 2, 33syl 17 . . 3  |-  ( ph  ->  Fun  `' `' F
)
5 f1ocnv 5266 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
61, 5syl 14 . . . . . 6  |-  ( ph  ->  `' F : B -1-1-onto-> A )
7 f1of1 5252 . . . . . 6  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B -1-1-> A
)
86, 7syl 14 . . . . 5  |-  ( ph  ->  `' F : B -1-1-> A
)
9 ssrab2 3106 . . . . 5  |-  { y  e.  B  |  ch }  C_  B
10 f1ores 5268 . . . . 5  |-  ( ( `' F : B -1-1-> A  /\  { y  e.  B  |  ch }  C_  B
)  ->  ( `' F  |`  { y  e.  B  |  ch }
) : { y  e.  B  |  ch }
-1-1-onto-> ( `' F " { y  e.  B  |  ch } ) )
118, 9, 10sylancl 404 . . . 4  |-  ( ph  ->  ( `' F  |`  { y  e.  B  |  ch } ) : { y  e.  B  |  ch } -1-1-onto-> ( `' F " { y  e.  B  |  ch } ) )
12 f1oresrab.1 . . . . . . 7  |-  F  =  ( x  e.  A  |->  C )
1312mptpreima 4924 . . . . . 6  |-  ( `' F " { y  e.  B  |  ch } )  =  {
x  e.  A  |  C  e.  { y  e.  B  |  ch } }
14 f1oresrab.3 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A  /\  y  =  C )  ->  ( ch  <->  ps ) )
15143expia 1145 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
y  =  C  -> 
( ch  <->  ps )
) )
1615alrimiv 1802 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  A. y
( y  =  C  ->  ( ch  <->  ps )
) )
17 f1of 5253 . . . . . . . . . . 11  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
181, 17syl 14 . . . . . . . . . 10  |-  ( ph  ->  F : A --> B )
1912fmpt 5449 . . . . . . . . . 10  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
2018, 19sylibr 132 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  C  e.  B )
2120r19.21bi 2461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
22 elrab3t 2770 . . . . . . . 8  |-  ( ( A. y ( y  =  C  ->  ( ch 
<->  ps ) )  /\  C  e.  B )  ->  ( C  e.  {
y  e.  B  |  ch }  <->  ps ) )
2316, 21, 22syl2anc 403 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( C  e.  { y  e.  B  |  ch } 
<->  ps ) )
2423rabbidva 2607 . . . . . 6  |-  ( ph  ->  { x  e.  A  |  C  e.  { y  e.  B  |  ch } }  =  {
x  e.  A  |  ps } )
2513, 24syl5eq 2132 . . . . 5  |-  ( ph  ->  ( `' F " { y  e.  B  |  ch } )  =  { x  e.  A  |  ps } )
26 f1oeq3 5246 . . . . 5  |-  ( ( `' F " { y  e.  B  |  ch } )  =  {
x  e.  A  |  ps }  ->  ( ( `' F  |`  { y  e.  B  |  ch } ) : {
y  e.  B  |  ch } -1-1-onto-> ( `' F " { y  e.  B  |  ch } )  <->  ( `' F  |`  { y  e.  B  |  ch }
) : { y  e.  B  |  ch }
-1-1-onto-> { x  e.  A  |  ps } ) )
2725, 26syl 14 . . . 4  |-  ( ph  ->  ( ( `' F  |` 
{ y  e.  B  |  ch } ) : { y  e.  B  |  ch } -1-1-onto-> ( `' F " { y  e.  B  |  ch } )  <->  ( `' F  |`  { y  e.  B  |  ch }
) : { y  e.  B  |  ch }
-1-1-onto-> { x  e.  A  |  ps } ) )
2811, 27mpbid 145 . . 3  |-  ( ph  ->  ( `' F  |`  { y  e.  B  |  ch } ) : { y  e.  B  |  ch } -1-1-onto-> { x  e.  A  |  ps } )
29 f1orescnv 5269 . . 3  |-  ( ( Fun  `' `' F  /\  ( `' F  |`  { y  e.  B  |  ch } ) : { y  e.  B  |  ch } -1-1-onto-> { x  e.  A  |  ps } )  -> 
( `' `' F  |` 
{ x  e.  A  |  ps } ) : { x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
304, 28, 29syl2anc 403 . 2  |-  ( ph  ->  ( `' `' F  |` 
{ x  e.  A  |  ps } ) : { x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
31 rescnvcnv 4893 . . 3  |-  ( `' `' F  |`  { x  e.  A  |  ps } )  =  ( F  |`  { x  e.  A  |  ps } )
32 f1oeq1 5244 . . 3  |-  ( ( `' `' F  |`  { x  e.  A  |  ps } )  =  ( F  |`  { x  e.  A  |  ps } )  ->  (
( `' `' F  |` 
{ x  e.  A  |  ps } ) : { x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch }  <->  ( F  |` 
{ x  e.  A  |  ps } ) : { x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } ) )
3331, 32ax-mp 7 . 2  |-  ( ( `' `' F  |`  { x  e.  A  |  ps } ) : {
x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch }  <->  ( F  |` 
{ x  e.  A  |  ps } ) : { x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
3430, 33sylib 120 1  |-  ( ph  ->  ( F  |`  { x  e.  A  |  ps } ) : {
x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924   A.wal 1287    = wceq 1289    e. wcel 1438   A.wral 2359   {crab 2363    C_ wss 2999    |-> cmpt 3899   `'ccnv 4437    |` cres 4440   "cima 4441   Fun wfun 5009   -->wf 5011   -1-1->wf1 5012   -1-1-onto->wf1o 5014
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2841  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator