| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oresrab | Unicode version | ||
| Description: Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| f1oresrab.1 |
|
| f1oresrab.2 |
|
| f1oresrab.3 |
|
| Ref | Expression |
|---|---|
| f1oresrab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oresrab.2 |
. . . 4
| |
| 2 | f1ofun 5574 |
. . . 4
| |
| 3 | funcnvcnv 5380 |
. . . 4
| |
| 4 | 1, 2, 3 | 3syl 17 |
. . 3
|
| 5 | f1ocnv 5585 |
. . . . . . 7
| |
| 6 | 1, 5 | syl 14 |
. . . . . 6
|
| 7 | f1of1 5571 |
. . . . . 6
| |
| 8 | 6, 7 | syl 14 |
. . . . 5
|
| 9 | ssrab2 3309 |
. . . . 5
| |
| 10 | f1ores 5587 |
. . . . 5
| |
| 11 | 8, 9, 10 | sylancl 413 |
. . . 4
|
| 12 | f1oresrab.1 |
. . . . . . 7
| |
| 13 | 12 | mptpreima 5222 |
. . . . . 6
|
| 14 | f1oresrab.3 |
. . . . . . . . . 10
| |
| 15 | 14 | 3expia 1229 |
. . . . . . . . 9
|
| 16 | 15 | alrimiv 1920 |
. . . . . . . 8
|
| 17 | f1of 5572 |
. . . . . . . . . . 11
| |
| 18 | 1, 17 | syl 14 |
. . . . . . . . . 10
|
| 19 | 12 | fmpt 5785 |
. . . . . . . . . 10
|
| 20 | 18, 19 | sylibr 134 |
. . . . . . . . 9
|
| 21 | 20 | r19.21bi 2618 |
. . . . . . . 8
|
| 22 | elrab3t 2958 |
. . . . . . . 8
| |
| 23 | 16, 21, 22 | syl2anc 411 |
. . . . . . 7
|
| 24 | 23 | rabbidva 2787 |
. . . . . 6
|
| 25 | 13, 24 | eqtrid 2274 |
. . . . 5
|
| 26 | f1oeq3 5562 |
. . . . 5
| |
| 27 | 25, 26 | syl 14 |
. . . 4
|
| 28 | 11, 27 | mpbid 147 |
. . 3
|
| 29 | f1orescnv 5588 |
. . 3
| |
| 30 | 4, 28, 29 | syl2anc 411 |
. 2
|
| 31 | rescnvcnv 5191 |
. . 3
| |
| 32 | f1oeq1 5560 |
. . 3
| |
| 33 | 31, 32 | ax-mp 5 |
. 2
|
| 34 | 30, 33 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |