Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oresrab | Unicode version |
Description: Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.) |
Ref | Expression |
---|---|
f1oresrab.1 | |
f1oresrab.2 | |
f1oresrab.3 |
Ref | Expression |
---|---|
f1oresrab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oresrab.2 | . . . 4 | |
2 | f1ofun 5434 | . . . 4 | |
3 | funcnvcnv 5247 | . . . 4 | |
4 | 1, 2, 3 | 3syl 17 | . . 3 |
5 | f1ocnv 5445 | . . . . . . 7 | |
6 | 1, 5 | syl 14 | . . . . . 6 |
7 | f1of1 5431 | . . . . . 6 | |
8 | 6, 7 | syl 14 | . . . . 5 |
9 | ssrab2 3227 | . . . . 5 | |
10 | f1ores 5447 | . . . . 5 | |
11 | 8, 9, 10 | sylancl 410 | . . . 4 |
12 | f1oresrab.1 | . . . . . . 7 | |
13 | 12 | mptpreima 5097 | . . . . . 6 |
14 | f1oresrab.3 | . . . . . . . . . 10 | |
15 | 14 | 3expia 1195 | . . . . . . . . 9 |
16 | 15 | alrimiv 1862 | . . . . . . . 8 |
17 | f1of 5432 | . . . . . . . . . . 11 | |
18 | 1, 17 | syl 14 | . . . . . . . . . 10 |
19 | 12 | fmpt 5635 | . . . . . . . . . 10 |
20 | 18, 19 | sylibr 133 | . . . . . . . . 9 |
21 | 20 | r19.21bi 2554 | . . . . . . . 8 |
22 | elrab3t 2881 | . . . . . . . 8 | |
23 | 16, 21, 22 | syl2anc 409 | . . . . . . 7 |
24 | 23 | rabbidva 2714 | . . . . . 6 |
25 | 13, 24 | syl5eq 2211 | . . . . 5 |
26 | f1oeq3 5423 | . . . . 5 | |
27 | 25, 26 | syl 14 | . . . 4 |
28 | 11, 27 | mpbid 146 | . . 3 |
29 | f1orescnv 5448 | . . 3 | |
30 | 4, 28, 29 | syl2anc 409 | . 2 |
31 | rescnvcnv 5066 | . . 3 | |
32 | f1oeq1 5421 | . . 3 | |
33 | 31, 32 | ax-mp 5 | . 2 |
34 | 30, 33 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wal 1341 wceq 1343 wcel 2136 wral 2444 crab 2448 wss 3116 cmpt 4043 ccnv 4603 cres 4606 cima 4607 wfun 5182 wf 5184 wf1 5185 wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |