Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oresrab | Unicode version |
Description: Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.) |
Ref | Expression |
---|---|
f1oresrab.1 | |
f1oresrab.2 | |
f1oresrab.3 |
Ref | Expression |
---|---|
f1oresrab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oresrab.2 | . . . 4 | |
2 | f1ofun 5444 | . . . 4 | |
3 | funcnvcnv 5257 | . . . 4 | |
4 | 1, 2, 3 | 3syl 17 | . . 3 |
5 | f1ocnv 5455 | . . . . . . 7 | |
6 | 1, 5 | syl 14 | . . . . . 6 |
7 | f1of1 5441 | . . . . . 6 | |
8 | 6, 7 | syl 14 | . . . . 5 |
9 | ssrab2 3232 | . . . . 5 | |
10 | f1ores 5457 | . . . . 5 | |
11 | 8, 9, 10 | sylancl 411 | . . . 4 |
12 | f1oresrab.1 | . . . . . . 7 | |
13 | 12 | mptpreima 5104 | . . . . . 6 |
14 | f1oresrab.3 | . . . . . . . . . 10 | |
15 | 14 | 3expia 1200 | . . . . . . . . 9 |
16 | 15 | alrimiv 1867 | . . . . . . . 8 |
17 | f1of 5442 | . . . . . . . . . . 11 | |
18 | 1, 17 | syl 14 | . . . . . . . . . 10 |
19 | 12 | fmpt 5646 | . . . . . . . . . 10 |
20 | 18, 19 | sylibr 133 | . . . . . . . . 9 |
21 | 20 | r19.21bi 2558 | . . . . . . . 8 |
22 | elrab3t 2885 | . . . . . . . 8 | |
23 | 16, 21, 22 | syl2anc 409 | . . . . . . 7 |
24 | 23 | rabbidva 2718 | . . . . . 6 |
25 | 13, 24 | eqtrid 2215 | . . . . 5 |
26 | f1oeq3 5433 | . . . . 5 | |
27 | 25, 26 | syl 14 | . . . 4 |
28 | 11, 27 | mpbid 146 | . . 3 |
29 | f1orescnv 5458 | . . 3 | |
30 | 4, 28, 29 | syl2anc 409 | . 2 |
31 | rescnvcnv 5073 | . . 3 | |
32 | f1oeq1 5431 | . . 3 | |
33 | 31, 32 | ax-mp 5 | . 2 |
34 | 30, 33 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wal 1346 wceq 1348 wcel 2141 wral 2448 crab 2452 wss 3121 cmpt 4050 ccnv 4610 cres 4613 cima 4614 wfun 5192 wf 5194 wf1 5195 wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |