Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oresrab | Unicode version |
Description: Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.) |
Ref | Expression |
---|---|
f1oresrab.1 | |
f1oresrab.2 | |
f1oresrab.3 |
Ref | Expression |
---|---|
f1oresrab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oresrab.2 | . . . 4 | |
2 | f1ofun 5409 | . . . 4 | |
3 | funcnvcnv 5222 | . . . 4 | |
4 | 1, 2, 3 | 3syl 17 | . . 3 |
5 | f1ocnv 5420 | . . . . . . 7 | |
6 | 1, 5 | syl 14 | . . . . . 6 |
7 | f1of1 5406 | . . . . . 6 | |
8 | 6, 7 | syl 14 | . . . . 5 |
9 | ssrab2 3209 | . . . . 5 | |
10 | f1ores 5422 | . . . . 5 | |
11 | 8, 9, 10 | sylancl 410 | . . . 4 |
12 | f1oresrab.1 | . . . . . . 7 | |
13 | 12 | mptpreima 5072 | . . . . . 6 |
14 | f1oresrab.3 | . . . . . . . . . 10 | |
15 | 14 | 3expia 1184 | . . . . . . . . 9 |
16 | 15 | alrimiv 1851 | . . . . . . . 8 |
17 | f1of 5407 | . . . . . . . . . . 11 | |
18 | 1, 17 | syl 14 | . . . . . . . . . 10 |
19 | 12 | fmpt 5610 | . . . . . . . . . 10 |
20 | 18, 19 | sylibr 133 | . . . . . . . . 9 |
21 | 20 | r19.21bi 2542 | . . . . . . . 8 |
22 | elrab3t 2863 | . . . . . . . 8 | |
23 | 16, 21, 22 | syl2anc 409 | . . . . . . 7 |
24 | 23 | rabbidva 2697 | . . . . . 6 |
25 | 13, 24 | syl5eq 2199 | . . . . 5 |
26 | f1oeq3 5398 | . . . . 5 | |
27 | 25, 26 | syl 14 | . . . 4 |
28 | 11, 27 | mpbid 146 | . . 3 |
29 | f1orescnv 5423 | . . 3 | |
30 | 4, 28, 29 | syl2anc 409 | . 2 |
31 | rescnvcnv 5041 | . . 3 | |
32 | f1oeq1 5396 | . . 3 | |
33 | 31, 32 | ax-mp 5 | . 2 |
34 | 30, 33 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wal 1330 wceq 1332 wcel 2125 wral 2432 crab 2436 wss 3098 cmpt 4021 ccnv 4578 cres 4581 cima 4582 wfun 5157 wf 5159 wf1 5160 wf1o 5162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-sbc 2934 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |