ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oresrab Unicode version

Theorem f1oresrab 5661
Description: Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.)
Hypotheses
Ref Expression
f1oresrab.1  |-  F  =  ( x  e.  A  |->  C )
f1oresrab.2  |-  ( ph  ->  F : A -1-1-onto-> B )
f1oresrab.3  |-  ( (
ph  /\  x  e.  A  /\  y  =  C )  ->  ( ch  <->  ps ) )
Assertion
Ref Expression
f1oresrab  |-  ( ph  ->  ( F  |`  { x  e.  A  |  ps } ) : {
x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
Distinct variable groups:    x, y, A   
x, B, y    y, C    ph, x, y    ps, y    ch, x
Allowed substitution hints:    ps( x)    ch( y)    C( x)    F( x, y)

Proof of Theorem f1oresrab
StepHypRef Expression
1 f1oresrab.2 . . . 4  |-  ( ph  ->  F : A -1-1-onto-> B )
2 f1ofun 5444 . . . 4  |-  ( F : A -1-1-onto-> B  ->  Fun  F )
3 funcnvcnv 5257 . . . 4  |-  ( Fun 
F  ->  Fun  `' `' F )
41, 2, 33syl 17 . . 3  |-  ( ph  ->  Fun  `' `' F
)
5 f1ocnv 5455 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
61, 5syl 14 . . . . . 6  |-  ( ph  ->  `' F : B -1-1-onto-> A )
7 f1of1 5441 . . . . . 6  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B -1-1-> A
)
86, 7syl 14 . . . . 5  |-  ( ph  ->  `' F : B -1-1-> A
)
9 ssrab2 3232 . . . . 5  |-  { y  e.  B  |  ch }  C_  B
10 f1ores 5457 . . . . 5  |-  ( ( `' F : B -1-1-> A  /\  { y  e.  B  |  ch }  C_  B
)  ->  ( `' F  |`  { y  e.  B  |  ch }
) : { y  e.  B  |  ch }
-1-1-onto-> ( `' F " { y  e.  B  |  ch } ) )
118, 9, 10sylancl 411 . . . 4  |-  ( ph  ->  ( `' F  |`  { y  e.  B  |  ch } ) : { y  e.  B  |  ch } -1-1-onto-> ( `' F " { y  e.  B  |  ch } ) )
12 f1oresrab.1 . . . . . . 7  |-  F  =  ( x  e.  A  |->  C )
1312mptpreima 5104 . . . . . 6  |-  ( `' F " { y  e.  B  |  ch } )  =  {
x  e.  A  |  C  e.  { y  e.  B  |  ch } }
14 f1oresrab.3 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A  /\  y  =  C )  ->  ( ch  <->  ps ) )
15143expia 1200 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
y  =  C  -> 
( ch  <->  ps )
) )
1615alrimiv 1867 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  A. y
( y  =  C  ->  ( ch  <->  ps )
) )
17 f1of 5442 . . . . . . . . . . 11  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
181, 17syl 14 . . . . . . . . . 10  |-  ( ph  ->  F : A --> B )
1912fmpt 5646 . . . . . . . . . 10  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
2018, 19sylibr 133 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  C  e.  B )
2120r19.21bi 2558 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
22 elrab3t 2885 . . . . . . . 8  |-  ( ( A. y ( y  =  C  ->  ( ch 
<->  ps ) )  /\  C  e.  B )  ->  ( C  e.  {
y  e.  B  |  ch }  <->  ps ) )
2316, 21, 22syl2anc 409 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( C  e.  { y  e.  B  |  ch } 
<->  ps ) )
2423rabbidva 2718 . . . . . 6  |-  ( ph  ->  { x  e.  A  |  C  e.  { y  e.  B  |  ch } }  =  {
x  e.  A  |  ps } )
2513, 24eqtrid 2215 . . . . 5  |-  ( ph  ->  ( `' F " { y  e.  B  |  ch } )  =  { x  e.  A  |  ps } )
26 f1oeq3 5433 . . . . 5  |-  ( ( `' F " { y  e.  B  |  ch } )  =  {
x  e.  A  |  ps }  ->  ( ( `' F  |`  { y  e.  B  |  ch } ) : {
y  e.  B  |  ch } -1-1-onto-> ( `' F " { y  e.  B  |  ch } )  <->  ( `' F  |`  { y  e.  B  |  ch }
) : { y  e.  B  |  ch }
-1-1-onto-> { x  e.  A  |  ps } ) )
2725, 26syl 14 . . . 4  |-  ( ph  ->  ( ( `' F  |` 
{ y  e.  B  |  ch } ) : { y  e.  B  |  ch } -1-1-onto-> ( `' F " { y  e.  B  |  ch } )  <->  ( `' F  |`  { y  e.  B  |  ch }
) : { y  e.  B  |  ch }
-1-1-onto-> { x  e.  A  |  ps } ) )
2811, 27mpbid 146 . . 3  |-  ( ph  ->  ( `' F  |`  { y  e.  B  |  ch } ) : { y  e.  B  |  ch } -1-1-onto-> { x  e.  A  |  ps } )
29 f1orescnv 5458 . . 3  |-  ( ( Fun  `' `' F  /\  ( `' F  |`  { y  e.  B  |  ch } ) : { y  e.  B  |  ch } -1-1-onto-> { x  e.  A  |  ps } )  -> 
( `' `' F  |` 
{ x  e.  A  |  ps } ) : { x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
304, 28, 29syl2anc 409 . 2  |-  ( ph  ->  ( `' `' F  |` 
{ x  e.  A  |  ps } ) : { x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
31 rescnvcnv 5073 . . 3  |-  ( `' `' F  |`  { x  e.  A  |  ps } )  =  ( F  |`  { x  e.  A  |  ps } )
32 f1oeq1 5431 . . 3  |-  ( ( `' `' F  |`  { x  e.  A  |  ps } )  =  ( F  |`  { x  e.  A  |  ps } )  ->  (
( `' `' F  |` 
{ x  e.  A  |  ps } ) : { x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch }  <->  ( F  |` 
{ x  e.  A  |  ps } ) : { x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } ) )
3331, 32ax-mp 5 . 2  |-  ( ( `' `' F  |`  { x  e.  A  |  ps } ) : {
x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch }  <->  ( F  |` 
{ x  e.  A  |  ps } ) : { x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
3430, 33sylib 121 1  |-  ( ph  ->  ( F  |`  { x  e.  A  |  ps } ) : {
x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973   A.wal 1346    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452    C_ wss 3121    |-> cmpt 4050   `'ccnv 4610    |` cres 4613   "cima 4614   Fun wfun 5192   -->wf 5194   -1-1->wf1 5195   -1-1-onto->wf1o 5197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator