Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctssdclemr | Unicode version |
Description: Lemma for ctssdc 7090. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.) |
Ref | Expression |
---|---|
ctssdclemr | ⊔ DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | foeq1 5416 | . . 3 ⊔ ⊔ | |
2 | 1 | cbvexv 1911 | . 2 ⊔ ⊔ |
3 | id 19 | . . . . . 6 ⊔ ⊔ | |
4 | eqid 2170 | . . . . . 6 inl inl | |
5 | eqid 2170 | . . . . . 6 inl inl | |
6 | 3, 4, 5 | ctssdccl 7088 | . . . . 5 ⊔ inl inl inl DECID inl |
7 | djulf1o 7035 | . . . . . . . . 9 inl | |
8 | f1ocnv 5455 | . . . . . . . . 9 inl inl | |
9 | f1ofun 5444 | . . . . . . . . 9 inl inl | |
10 | 7, 8, 9 | mp2b 8 | . . . . . . . 8 inl |
11 | vex 2733 | . . . . . . . 8 | |
12 | cofunexg 6088 | . . . . . . . 8 inl inl | |
13 | 10, 11, 12 | mp2an 424 | . . . . . . 7 inl |
14 | foeq1 5416 | . . . . . . 7 inl inl inl inl | |
15 | 13, 14 | spcev 2825 | . . . . . 6 inl inl inl |
16 | 15 | 3anim2i 1181 | . . . . 5 inl inl inl DECID inl inl inl DECID inl |
17 | 6, 16 | syl 14 | . . . 4 ⊔ inl inl DECID inl |
18 | omex 4577 | . . . . . 6 | |
19 | 18 | rabex 4133 | . . . . 5 inl |
20 | sseq1 3170 | . . . . . 6 inl inl | |
21 | foeq2 5417 | . . . . . . 7 inl inl | |
22 | 21 | exbidv 1818 | . . . . . 6 inl inl |
23 | eleq2 2234 | . . . . . . . 8 inl inl | |
24 | 23 | dcbid 833 | . . . . . . 7 inl DECID DECID inl |
25 | 24 | ralbidv 2470 | . . . . . 6 inl DECID DECID inl |
26 | 20, 22, 25 | 3anbi123d 1307 | . . . . 5 inl DECID inl inl DECID inl |
27 | 19, 26 | spcev 2825 | . . . 4 inl inl DECID inl DECID |
28 | 17, 27 | syl 14 | . . 3 ⊔ DECID |
29 | 28 | exlimiv 1591 | . 2 ⊔ DECID |
30 | 2, 29 | sylbi 120 | 1 ⊔ DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 DECID wdc 829 w3a 973 wceq 1348 wex 1485 wcel 2141 wral 2448 crab 2452 cvv 2730 wss 3121 c0 3414 csn 3583 com 4574 cxp 4609 ccnv 4610 cima 4614 ccom 4615 wfun 5192 wfo 5196 wf1o 5197 cfv 5198 c1o 6388 ⊔ cdju 7014 inlcinl 7022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: ctssdc 7090 |
Copyright terms: Public domain | W3C validator |