Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctssdclemr | Unicode version |
Description: Lemma for ctssdc 7078. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.) |
Ref | Expression |
---|---|
ctssdclemr | ⊔ DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | foeq1 5406 | . . 3 ⊔ ⊔ | |
2 | 1 | cbvexv 1906 | . 2 ⊔ ⊔ |
3 | id 19 | . . . . . 6 ⊔ ⊔ | |
4 | eqid 2165 | . . . . . 6 inl inl | |
5 | eqid 2165 | . . . . . 6 inl inl | |
6 | 3, 4, 5 | ctssdccl 7076 | . . . . 5 ⊔ inl inl inl DECID inl |
7 | djulf1o 7023 | . . . . . . . . 9 inl | |
8 | f1ocnv 5445 | . . . . . . . . 9 inl inl | |
9 | f1ofun 5434 | . . . . . . . . 9 inl inl | |
10 | 7, 8, 9 | mp2b 8 | . . . . . . . 8 inl |
11 | vex 2729 | . . . . . . . 8 | |
12 | cofunexg 6077 | . . . . . . . 8 inl inl | |
13 | 10, 11, 12 | mp2an 423 | . . . . . . 7 inl |
14 | foeq1 5406 | . . . . . . 7 inl inl inl inl | |
15 | 13, 14 | spcev 2821 | . . . . . 6 inl inl inl |
16 | 15 | 3anim2i 1176 | . . . . 5 inl inl inl DECID inl inl inl DECID inl |
17 | 6, 16 | syl 14 | . . . 4 ⊔ inl inl DECID inl |
18 | omex 4570 | . . . . . 6 | |
19 | 18 | rabex 4126 | . . . . 5 inl |
20 | sseq1 3165 | . . . . . 6 inl inl | |
21 | foeq2 5407 | . . . . . . 7 inl inl | |
22 | 21 | exbidv 1813 | . . . . . 6 inl inl |
23 | eleq2 2230 | . . . . . . . 8 inl inl | |
24 | 23 | dcbid 828 | . . . . . . 7 inl DECID DECID inl |
25 | 24 | ralbidv 2466 | . . . . . 6 inl DECID DECID inl |
26 | 20, 22, 25 | 3anbi123d 1302 | . . . . 5 inl DECID inl inl DECID inl |
27 | 19, 26 | spcev 2821 | . . . 4 inl inl DECID inl DECID |
28 | 17, 27 | syl 14 | . . 3 ⊔ DECID |
29 | 28 | exlimiv 1586 | . 2 ⊔ DECID |
30 | 2, 29 | sylbi 120 | 1 ⊔ DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 DECID wdc 824 w3a 968 wceq 1343 wex 1480 wcel 2136 wral 2444 crab 2448 cvv 2726 wss 3116 c0 3409 csn 3576 com 4567 cxp 4602 ccnv 4603 cima 4607 ccom 4608 wfun 5182 wfo 5186 wf1o 5187 cfv 5188 c1o 6377 ⊔ cdju 7002 inlcinl 7010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 |
This theorem is referenced by: ctssdc 7078 |
Copyright terms: Public domain | W3C validator |