ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssdclemr Unicode version

Theorem ctssdclemr 6949
Description: Lemma for ctssdc 6950. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.)
Assertion
Ref Expression
ctssdclemr  |-  ( E. f  f : om -onto->
( A 1o )  ->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> A  /\  A. n  e. 
om DECID 
n  e.  s ) )
Distinct variable groups:    A, f, s    A, n, s

Proof of Theorem ctssdclemr
Dummy variables  g  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foeq1 5299 . . 3  |-  ( f  =  g  ->  (
f : om -onto-> ( A 1o )  <->  g : om -onto-> ( A 1o ) ) )
21cbvexv 1870 . 2  |-  ( E. f  f : om -onto->
( A 1o )  <->  E. g  g : om -onto->
( A 1o )
)
3 id 19 . . . . . 6  |-  ( g : om -onto-> ( A 1o )  ->  g : om -onto-> ( A 1o ) )
4 eqid 2115 . . . . . 6  |-  { t  e.  om  |  ( g `  t )  e.  (inl " A
) }  =  {
t  e.  om  | 
( g `  t
)  e.  (inl " A ) }
5 eqid 2115 . . . . . 6  |-  ( `'inl 
o.  g )  =  ( `'inl  o.  g
)
63, 4, 5ctssdccl 6948 . . . . 5  |-  ( g : om -onto-> ( A 1o )  ->  ( { t  e.  om  | 
( g `  t
)  e.  (inl " A ) }  C_  om 
/\  ( `'inl  o.  g ) : {
t  e.  om  | 
( g `  t
)  e.  (inl " A ) } -onto-> A  /\  A. n  e.  om DECID  n  e.  { t  e.  om  |  ( g `  t )  e.  (inl " A ) } ) )
7 djulf1o 6895 . . . . . . . . 9  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
8 f1ocnv 5336 . . . . . . . . 9  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  ->  `'inl : ( { (/) }  X.  _V ) -1-1-onto-> _V )
9 f1ofun 5325 . . . . . . . . 9  |-  ( `'inl
: ( { (/) }  X.  _V ) -1-1-onto-> _V  ->  Fun  `'inl )
107, 8, 9mp2b 8 . . . . . . . 8  |-  Fun  `'inl
11 vex 2660 . . . . . . . 8  |-  g  e. 
_V
12 cofunexg 5963 . . . . . . . 8  |-  ( ( Fun  `'inl  /\  g  e.  _V )  ->  ( `'inl  o.  g )  e. 
_V )
1310, 11, 12mp2an 420 . . . . . . 7  |-  ( `'inl 
o.  g )  e. 
_V
14 foeq1 5299 . . . . . . 7  |-  ( f  =  ( `'inl  o.  g )  ->  (
f : { t  e.  om  |  ( g `  t )  e.  (inl " A
) } -onto-> A  <->  ( `'inl  o.  g ) : {
t  e.  om  | 
( g `  t
)  e.  (inl " A ) } -onto-> A
) )
1513, 14spcev 2751 . . . . . 6  |-  ( ( `'inl  o.  g ) : { t  e.  om  |  ( g `  t )  e.  (inl " A ) } -onto-> A  ->  E. f  f : { t  e.  om  |  ( g `  t )  e.  (inl " A ) } -onto-> A
)
16153anim2i 1151 . . . . 5  |-  ( ( { t  e.  om  |  ( g `  t )  e.  (inl " A ) }  C_  om 
/\  ( `'inl  o.  g ) : {
t  e.  om  | 
( g `  t
)  e.  (inl " A ) } -onto-> A  /\  A. n  e.  om DECID  n  e.  { t  e.  om  |  ( g `  t )  e.  (inl " A ) } )  ->  ( { t  e.  om  |  ( g `  t )  e.  (inl " A
) }  C_  om  /\  E. f  f : {
t  e.  om  | 
( g `  t
)  e.  (inl " A ) } -onto-> A  /\  A. n  e.  om DECID  n  e.  { t  e.  om  |  ( g `  t )  e.  (inl " A ) } ) )
176, 16syl 14 . . . 4  |-  ( g : om -onto-> ( A 1o )  ->  ( { t  e.  om  | 
( g `  t
)  e.  (inl " A ) }  C_  om 
/\  E. f  f : { t  e.  om  |  ( g `  t )  e.  (inl " A ) } -onto-> A  /\  A. n  e.  om DECID  n  e.  { t  e.  om  |  ( g `  t )  e.  (inl " A ) } ) )
18 omex 4467 . . . . . 6  |-  om  e.  _V
1918rabex 4032 . . . . 5  |-  { t  e.  om  |  ( g `  t )  e.  (inl " A
) }  e.  _V
20 sseq1 3086 . . . . . 6  |-  ( s  =  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  ->  ( s  C_ 
om 
<->  { t  e.  om  |  ( g `  t )  e.  (inl " A ) }  C_  om ) )
21 foeq2 5300 . . . . . . 7  |-  ( s  =  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  ->  ( f : s -onto-> A  <->  f : { t  e.  om  |  ( g `  t )  e.  (inl " A ) } -onto-> A
) )
2221exbidv 1779 . . . . . 6  |-  ( s  =  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  ->  ( E. f  f : s
-onto-> A  <->  E. f  f : { t  e.  om  |  ( g `  t )  e.  (inl " A ) } -onto-> A
) )
23 eleq2 2178 . . . . . . . 8  |-  ( s  =  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  ->  ( n  e.  s  <->  n  e.  { t  e.  om  |  ( g `  t )  e.  (inl " A
) } ) )
2423dcbid 806 . . . . . . 7  |-  ( s  =  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  ->  (DECID  n  e.  s 
<-> DECID  n  e.  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) } ) )
2524ralbidv 2411 . . . . . 6  |-  ( s  =  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  ->  ( A. n  e.  om DECID  n  e.  s  <->  A. n  e.  om DECID  n  e.  { t  e.  om  | 
( g `  t
)  e.  (inl " A ) } ) )
2620, 22, 253anbi123d 1273 . . . . 5  |-  ( s  =  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  ->  ( (
s  C_  om  /\  E. f  f : s
-onto-> A  /\  A. n  e.  om DECID  n  e.  s )  <-> 
( { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  C_  om  /\  E. f  f : {
t  e.  om  | 
( g `  t
)  e.  (inl " A ) } -onto-> A  /\  A. n  e.  om DECID  n  e.  { t  e.  om  |  ( g `  t )  e.  (inl " A ) } ) ) )
2719, 26spcev 2751 . . . 4  |-  ( ( { t  e.  om  |  ( g `  t )  e.  (inl " A ) }  C_  om 
/\  E. f  f : { t  e.  om  |  ( g `  t )  e.  (inl " A ) } -onto-> A  /\  A. n  e.  om DECID  n  e.  { t  e.  om  |  ( g `  t )  e.  (inl " A ) } )  ->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> A  /\  A. n  e. 
om DECID 
n  e.  s ) )
2817, 27syl 14 . . 3  |-  ( g : om -onto-> ( A 1o )  ->  E. s
( s  C_  om  /\  E. f  f : s
-onto-> A  /\  A. n  e.  om DECID  n  e.  s ) )
2928exlimiv 1560 . 2  |-  ( E. g  g : om -onto->
( A 1o )  ->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> A  /\  A. n  e. 
om DECID 
n  e.  s ) )
302, 29sylbi 120 1  |-  ( E. f  f : om -onto->
( A 1o )  ->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> A  /\  A. n  e. 
om DECID 
n  e.  s ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 802    /\ w3a 945    = wceq 1314   E.wex 1451    e. wcel 1463   A.wral 2390   {crab 2394   _Vcvv 2657    C_ wss 3037   (/)c0 3329   {csn 3493   omcom 4464    X. cxp 4497   `'ccnv 4498   "cima 4502    o. ccom 4503   Fun wfun 5075   -onto->wfo 5079   -1-1-onto->wf1o 5080   ` cfv 5081   1oc1o 6260   ⊔ cdju 6874  inlcinl 6882
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-1st 5992  df-2nd 5993  df-1o 6267  df-dju 6875  df-inl 6884  df-inr 6885
This theorem is referenced by:  ctssdc  6950
  Copyright terms: Public domain W3C validator