| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ctssdclemr | Unicode version | ||
| Description: Lemma for ctssdc 7215. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.) |
| Ref | Expression |
|---|---|
| ctssdclemr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | foeq1 5494 |
. . 3
| |
| 2 | 1 | cbvexv 1942 |
. 2
|
| 3 | id 19 |
. . . . . 6
| |
| 4 | eqid 2205 |
. . . . . 6
| |
| 5 | eqid 2205 |
. . . . . 6
| |
| 6 | 3, 4, 5 | ctssdccl 7213 |
. . . . 5
|
| 7 | djulf1o 7160 |
. . . . . . . . 9
| |
| 8 | f1ocnv 5535 |
. . . . . . . . 9
| |
| 9 | f1ofun 5524 |
. . . . . . . . 9
| |
| 10 | 7, 8, 9 | mp2b 8 |
. . . . . . . 8
|
| 11 | vex 2775 |
. . . . . . . 8
| |
| 12 | cofunexg 6194 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | mp2an 426 |
. . . . . . 7
|
| 14 | foeq1 5494 |
. . . . . . 7
| |
| 15 | 13, 14 | spcev 2868 |
. . . . . 6
|
| 16 | 15 | 3anim2i 1189 |
. . . . 5
|
| 17 | 6, 16 | syl 14 |
. . . 4
|
| 18 | omex 4641 |
. . . . . 6
| |
| 19 | 18 | rabex 4188 |
. . . . 5
|
| 20 | sseq1 3216 |
. . . . . 6
| |
| 21 | foeq2 5495 |
. . . . . . 7
| |
| 22 | 21 | exbidv 1848 |
. . . . . 6
|
| 23 | eleq2 2269 |
. . . . . . . 8
| |
| 24 | 23 | dcbid 840 |
. . . . . . 7
|
| 25 | 24 | ralbidv 2506 |
. . . . . 6
|
| 26 | 20, 22, 25 | 3anbi123d 1325 |
. . . . 5
|
| 27 | 19, 26 | spcev 2868 |
. . . 4
|
| 28 | 17, 27 | syl 14 |
. . 3
|
| 29 | 28 | exlimiv 1621 |
. 2
|
| 30 | 2, 29 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1st 6226 df-2nd 6227 df-1o 6502 df-dju 7140 df-inl 7149 df-inr 7150 |
| This theorem is referenced by: ctssdc 7215 |
| Copyright terms: Public domain | W3C validator |