ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssdclemr Unicode version

Theorem ctssdclemr 7240
Description: Lemma for ctssdc 7241. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.)
Assertion
Ref Expression
ctssdclemr  |-  ( E. f  f : om -onto->
( A 1o )  ->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> A  /\  A. n  e. 
om DECID 
n  e.  s ) )
Distinct variable groups:    A, f, s    A, n, s

Proof of Theorem ctssdclemr
Dummy variables  g  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foeq1 5516 . . 3  |-  ( f  =  g  ->  (
f : om -onto-> ( A 1o )  <->  g : om -onto-> ( A 1o ) ) )
21cbvexv 1943 . 2  |-  ( E. f  f : om -onto->
( A 1o )  <->  E. g  g : om -onto->
( A 1o )
)
3 id 19 . . . . . 6  |-  ( g : om -onto-> ( A 1o )  ->  g : om -onto-> ( A 1o ) )
4 eqid 2207 . . . . . 6  |-  { t  e.  om  |  ( g `  t )  e.  (inl " A
) }  =  {
t  e.  om  | 
( g `  t
)  e.  (inl " A ) }
5 eqid 2207 . . . . . 6  |-  ( `'inl 
o.  g )  =  ( `'inl  o.  g
)
63, 4, 5ctssdccl 7239 . . . . 5  |-  ( g : om -onto-> ( A 1o )  ->  ( { t  e.  om  | 
( g `  t
)  e.  (inl " A ) }  C_  om 
/\  ( `'inl  o.  g ) : {
t  e.  om  | 
( g `  t
)  e.  (inl " A ) } -onto-> A  /\  A. n  e.  om DECID  n  e.  { t  e.  om  |  ( g `  t )  e.  (inl " A ) } ) )
7 djulf1o 7186 . . . . . . . . 9  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
8 f1ocnv 5557 . . . . . . . . 9  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  ->  `'inl : ( { (/) }  X.  _V ) -1-1-onto-> _V )
9 f1ofun 5546 . . . . . . . . 9  |-  ( `'inl
: ( { (/) }  X.  _V ) -1-1-onto-> _V  ->  Fun  `'inl )
107, 8, 9mp2b 8 . . . . . . . 8  |-  Fun  `'inl
11 vex 2779 . . . . . . . 8  |-  g  e. 
_V
12 cofunexg 6217 . . . . . . . 8  |-  ( ( Fun  `'inl  /\  g  e.  _V )  ->  ( `'inl  o.  g )  e. 
_V )
1310, 11, 12mp2an 426 . . . . . . 7  |-  ( `'inl 
o.  g )  e. 
_V
14 foeq1 5516 . . . . . . 7  |-  ( f  =  ( `'inl  o.  g )  ->  (
f : { t  e.  om  |  ( g `  t )  e.  (inl " A
) } -onto-> A  <->  ( `'inl  o.  g ) : {
t  e.  om  | 
( g `  t
)  e.  (inl " A ) } -onto-> A
) )
1513, 14spcev 2875 . . . . . 6  |-  ( ( `'inl  o.  g ) : { t  e.  om  |  ( g `  t )  e.  (inl " A ) } -onto-> A  ->  E. f  f : { t  e.  om  |  ( g `  t )  e.  (inl " A ) } -onto-> A
)
16153anim2i 1189 . . . . 5  |-  ( ( { t  e.  om  |  ( g `  t )  e.  (inl " A ) }  C_  om 
/\  ( `'inl  o.  g ) : {
t  e.  om  | 
( g `  t
)  e.  (inl " A ) } -onto-> A  /\  A. n  e.  om DECID  n  e.  { t  e.  om  |  ( g `  t )  e.  (inl " A ) } )  ->  ( { t  e.  om  |  ( g `  t )  e.  (inl " A
) }  C_  om  /\  E. f  f : {
t  e.  om  | 
( g `  t
)  e.  (inl " A ) } -onto-> A  /\  A. n  e.  om DECID  n  e.  { t  e.  om  |  ( g `  t )  e.  (inl " A ) } ) )
176, 16syl 14 . . . 4  |-  ( g : om -onto-> ( A 1o )  ->  ( { t  e.  om  | 
( g `  t
)  e.  (inl " A ) }  C_  om 
/\  E. f  f : { t  e.  om  |  ( g `  t )  e.  (inl " A ) } -onto-> A  /\  A. n  e.  om DECID  n  e.  { t  e.  om  |  ( g `  t )  e.  (inl " A ) } ) )
18 omex 4659 . . . . . 6  |-  om  e.  _V
1918rabex 4204 . . . . 5  |-  { t  e.  om  |  ( g `  t )  e.  (inl " A
) }  e.  _V
20 sseq1 3224 . . . . . 6  |-  ( s  =  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  ->  ( s  C_ 
om 
<->  { t  e.  om  |  ( g `  t )  e.  (inl " A ) }  C_  om ) )
21 foeq2 5517 . . . . . . 7  |-  ( s  =  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  ->  ( f : s -onto-> A  <->  f : { t  e.  om  |  ( g `  t )  e.  (inl " A ) } -onto-> A
) )
2221exbidv 1849 . . . . . 6  |-  ( s  =  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  ->  ( E. f  f : s
-onto-> A  <->  E. f  f : { t  e.  om  |  ( g `  t )  e.  (inl " A ) } -onto-> A
) )
23 eleq2 2271 . . . . . . . 8  |-  ( s  =  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  ->  ( n  e.  s  <->  n  e.  { t  e.  om  |  ( g `  t )  e.  (inl " A
) } ) )
2423dcbid 840 . . . . . . 7  |-  ( s  =  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  ->  (DECID  n  e.  s 
<-> DECID  n  e.  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) } ) )
2524ralbidv 2508 . . . . . 6  |-  ( s  =  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  ->  ( A. n  e.  om DECID  n  e.  s  <->  A. n  e.  om DECID  n  e.  { t  e.  om  | 
( g `  t
)  e.  (inl " A ) } ) )
2620, 22, 253anbi123d 1325 . . . . 5  |-  ( s  =  { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  ->  ( (
s  C_  om  /\  E. f  f : s
-onto-> A  /\  A. n  e.  om DECID  n  e.  s )  <-> 
( { t  e. 
om  |  ( g `
 t )  e.  (inl " A ) }  C_  om  /\  E. f  f : {
t  e.  om  | 
( g `  t
)  e.  (inl " A ) } -onto-> A  /\  A. n  e.  om DECID  n  e.  { t  e.  om  |  ( g `  t )  e.  (inl " A ) } ) ) )
2719, 26spcev 2875 . . . 4  |-  ( ( { t  e.  om  |  ( g `  t )  e.  (inl " A ) }  C_  om 
/\  E. f  f : { t  e.  om  |  ( g `  t )  e.  (inl " A ) } -onto-> A  /\  A. n  e.  om DECID  n  e.  { t  e.  om  |  ( g `  t )  e.  (inl " A ) } )  ->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> A  /\  A. n  e. 
om DECID 
n  e.  s ) )
2817, 27syl 14 . . 3  |-  ( g : om -onto-> ( A 1o )  ->  E. s
( s  C_  om  /\  E. f  f : s
-onto-> A  /\  A. n  e.  om DECID  n  e.  s ) )
2928exlimiv 1622 . 2  |-  ( E. g  g : om -onto->
( A 1o )  ->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> A  /\  A. n  e. 
om DECID 
n  e.  s ) )
302, 29sylbi 121 1  |-  ( E. f  f : om -onto->
( A 1o )  ->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> A  /\  A. n  e. 
om DECID 
n  e.  s ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 836    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   {crab 2490   _Vcvv 2776    C_ wss 3174   (/)c0 3468   {csn 3643   omcom 4656    X. cxp 4691   `'ccnv 4692   "cima 4696    o. ccom 4697   Fun wfun 5284   -onto->wfo 5288   -1-1-onto->wf1o 5289   ` cfv 5290   1oc1o 6518   ⊔ cdju 7165  inlcinl 7173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-dju 7166  df-inl 7175  df-inr 7176
This theorem is referenced by:  ctssdc  7241
  Copyright terms: Public domain W3C validator