ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ofun GIF version

Theorem f1ofun 5576
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.)
Assertion
Ref Expression
f1ofun (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)

Proof of Theorem f1ofun
StepHypRef Expression
1 f1ofn 5575 . 2 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
2 fnfun 5418 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
31, 2syl 14 1 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Fun wfun 5312   Fn wfn 5313  1-1-ontowf1o 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5321  df-f 5322  df-f1 5323  df-f1o 5325
This theorem is referenced by:  f1orel  5577  f1oresrab  5802  isose  5951  f1opw  6219  xpcomco  6993  fiintim  7101  f1dmvrnfibi  7119  caseinl  7266  caseinr  7267  ctssdccl  7286  ctssdclemr  7287  fihasheqf1oi  11017  fisumss  11911  ennnfonelemex  12993  ennnfonelemf1  12997  hmeontr  14995
  Copyright terms: Public domain W3C validator