Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ofun | GIF version |
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 5454 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 5305 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fun wfun 5202 Fn wfn 5203 –1-1-onto→wf1o 5207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-fn 5211 df-f 5212 df-f1 5213 df-f1o 5215 |
This theorem is referenced by: f1orel 5456 f1oresrab 5673 isose 5812 f1opw 6068 xpcomco 6816 fiintim 6918 f1dmvrnfibi 6933 caseinl 7080 caseinr 7081 ctssdccl 7100 ctssdclemr 7101 fihasheqf1oi 10735 fisumss 11368 ennnfonelemex 12382 ennnfonelemf1 12386 hmeontr 13384 |
Copyright terms: Public domain | W3C validator |