Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ofun | GIF version |
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 5433 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 5285 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fun wfun 5182 Fn wfn 5183 –1-1-onto→wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-fn 5191 df-f 5192 df-f1 5193 df-f1o 5195 |
This theorem is referenced by: f1orel 5435 f1oresrab 5650 isose 5789 f1opw 6045 xpcomco 6792 fiintim 6894 f1dmvrnfibi 6909 caseinl 7056 caseinr 7057 ctssdccl 7076 ctssdclemr 7077 fihasheqf1oi 10701 fisumss 11333 ennnfonelemex 12347 ennnfonelemf1 12351 hmeontr 12953 |
Copyright terms: Public domain | W3C validator |