![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ofun | GIF version |
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 5502 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 5352 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fun wfun 5249 Fn wfn 5250 –1-1-onto→wf1o 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-fn 5258 df-f 5259 df-f1 5260 df-f1o 5262 |
This theorem is referenced by: f1orel 5504 f1oresrab 5724 isose 5865 f1opw 6127 xpcomco 6882 fiintim 6987 f1dmvrnfibi 7005 caseinl 7152 caseinr 7153 ctssdccl 7172 ctssdclemr 7173 fihasheqf1oi 10861 fisumss 11538 ennnfonelemex 12574 ennnfonelemf1 12578 hmeontr 14492 |
Copyright terms: Public domain | W3C validator |