![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ofun | GIF version |
Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofn 5302 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 5156 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fun wfun 5053 Fn wfn 5054 –1-1-onto→wf1o 5058 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-fn 5062 df-f 5063 df-f1 5064 df-f1o 5066 |
This theorem is referenced by: f1orel 5304 f1oresrab 5517 isose 5654 f1opw 5909 xpcomco 6649 fiintim 6746 f1dmvrnfibi 6760 caseinl 6891 caseinr 6892 ctssdclemr 6911 fihasheqf1oi 10375 fisumss 11000 ennnfonelemex 11719 ennnfonelemf1 11723 |
Copyright terms: Public domain | W3C validator |