| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ofun | GIF version | ||
| Description: A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1ofun | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofn 5530 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 5376 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fun wfun 5270 Fn wfn 5271 –1-1-onto→wf1o 5275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5279 df-f 5280 df-f1 5281 df-f1o 5283 |
| This theorem is referenced by: f1orel 5532 f1oresrab 5752 isose 5897 f1opw 6160 xpcomco 6928 fiintim 7035 f1dmvrnfibi 7053 caseinl 7200 caseinr 7201 ctssdccl 7220 ctssdclemr 7221 fihasheqf1oi 10939 fisumss 11747 ennnfonelemex 12829 ennnfonelemf1 12833 hmeontr 14829 |
| Copyright terms: Public domain | W3C validator |