ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1opw Unicode version

Theorem f1opw 6080
Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
f1opw  |-  ( F : A -1-1-onto-> B  ->  ( b  e.  ~P A  |->  ( F
" b ) ) : ~P A -1-1-onto-> ~P B
)
Distinct variable groups:    A, b    B, b    F, b

Proof of Theorem f1opw
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( F : A -1-1-onto-> B  ->  F : A
-1-1-onto-> B )
2 dff1o3 5469 . . . 4  |-  ( F : A -1-1-onto-> B  <->  ( F : A -onto-> B  /\  Fun  `' F ) )
32simprbi 275 . . 3  |-  ( F : A -1-1-onto-> B  ->  Fun  `' F
)
4 vex 2742 . . . 4  |-  a  e. 
_V
54funimaex 5303 . . 3  |-  ( Fun  `' F  ->  ( `' F " a )  e.  _V )
63, 5syl 14 . 2  |-  ( F : A -1-1-onto-> B  ->  ( `' F " a )  e. 
_V )
7 f1ofun 5465 . . 3  |-  ( F : A -1-1-onto-> B  ->  Fun  F )
8 vex 2742 . . . 4  |-  b  e. 
_V
98funimaex 5303 . . 3  |-  ( Fun 
F  ->  ( F " b )  e.  _V )
107, 9syl 14 . 2  |-  ( F : A -1-1-onto-> B  ->  ( F " b )  e.  _V )
111, 6, 10f1opw2 6079 1  |-  ( F : A -1-1-onto-> B  ->  ( b  e.  ~P A  |->  ( F
" b ) ) : ~P A -1-1-onto-> ~P B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   _Vcvv 2739   ~Pcpw 3577    |-> cmpt 4066   `'ccnv 4627   "cima 4631   Fun wfun 5212   -onto->wfo 5216   -1-1-onto->wf1o 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator