ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1opw Unicode version

Theorem f1opw 6213
Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
f1opw  |-  ( F : A -1-1-onto-> B  ->  ( b  e.  ~P A  |->  ( F
" b ) ) : ~P A -1-1-onto-> ~P B
)
Distinct variable groups:    A, b    B, b    F, b

Proof of Theorem f1opw
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( F : A -1-1-onto-> B  ->  F : A
-1-1-onto-> B )
2 dff1o3 5578 . . . 4  |-  ( F : A -1-1-onto-> B  <->  ( F : A -onto-> B  /\  Fun  `' F ) )
32simprbi 275 . . 3  |-  ( F : A -1-1-onto-> B  ->  Fun  `' F
)
4 vex 2802 . . . 4  |-  a  e. 
_V
54funimaex 5406 . . 3  |-  ( Fun  `' F  ->  ( `' F " a )  e.  _V )
63, 5syl 14 . 2  |-  ( F : A -1-1-onto-> B  ->  ( `' F " a )  e. 
_V )
7 f1ofun 5574 . . 3  |-  ( F : A -1-1-onto-> B  ->  Fun  F )
8 vex 2802 . . . 4  |-  b  e. 
_V
98funimaex 5406 . . 3  |-  ( Fun 
F  ->  ( F " b )  e.  _V )
107, 9syl 14 . 2  |-  ( F : A -1-1-onto-> B  ->  ( F " b )  e.  _V )
111, 6, 10f1opw2 6212 1  |-  ( F : A -1-1-onto-> B  ->  ( b  e.  ~P A  |->  ( F
" b ) ) : ~P A -1-1-onto-> ~P B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   _Vcvv 2799   ~Pcpw 3649    |-> cmpt 4145   `'ccnv 4718   "cima 4722   Fun wfun 5312   -onto->wfo 5316   -1-1-onto->wf1o 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator