ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foeq2 Unicode version

Theorem foeq2 5474
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq2  |-  ( A  =  B  ->  ( F : A -onto-> C  <->  F : B -onto-> C ) )

Proof of Theorem foeq2
StepHypRef Expression
1 fneq2 5344 . . 3  |-  ( A  =  B  ->  ( F  Fn  A  <->  F  Fn  B ) )
21anbi1d 465 . 2  |-  ( A  =  B  ->  (
( F  Fn  A  /\  ran  F  =  C )  <->  ( F  Fn  B  /\  ran  F  =  C ) ) )
3 df-fo 5261 . 2  |-  ( F : A -onto-> C  <->  ( F  Fn  A  /\  ran  F  =  C ) )
4 df-fo 5261 . 2  |-  ( F : B -onto-> C  <->  ( F  Fn  B  /\  ran  F  =  C ) )
52, 3, 43bitr4g 223 1  |-  ( A  =  B  ->  ( F : A -onto-> C  <->  F : B -onto-> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   ran crn 4661    Fn wfn 5250   -onto->wfo 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-fn 5258  df-fo 5261
This theorem is referenced by:  f1oeq2  5490  foeq123d  5494  tposfo  6326  ctssdclemr  7173  enumct  7176  exmidfodomrlemr  7264  exmidfodomrlemrALT  7265  ctinf  12590  ctiunct  12600  ssomct  12605  subctctexmid  15561
  Copyright terms: Public domain W3C validator