ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foeq2 Unicode version

Theorem foeq2 5406
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq2  |-  ( A  =  B  ->  ( F : A -onto-> C  <->  F : B -onto-> C ) )

Proof of Theorem foeq2
StepHypRef Expression
1 fneq2 5276 . . 3  |-  ( A  =  B  ->  ( F  Fn  A  <->  F  Fn  B ) )
21anbi1d 461 . 2  |-  ( A  =  B  ->  (
( F  Fn  A  /\  ran  F  =  C )  <->  ( F  Fn  B  /\  ran  F  =  C ) ) )
3 df-fo 5193 . 2  |-  ( F : A -onto-> C  <->  ( F  Fn  A  /\  ran  F  =  C ) )
4 df-fo 5193 . 2  |-  ( F : B -onto-> C  <->  ( F  Fn  B  /\  ran  F  =  C ) )
52, 3, 43bitr4g 222 1  |-  ( A  =  B  ->  ( F : A -onto-> C  <->  F : B -onto-> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   ran crn 4604    Fn wfn 5182   -onto->wfo 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-fn 5190  df-fo 5193
This theorem is referenced by:  f1oeq2  5421  foeq123d  5425  tposfo  6235  ctssdclemr  7073  enumct  7076  exmidfodomrlemr  7154  exmidfodomrlemrALT  7155  ctinf  12359  ctiunct  12369  ssomct  12374  subctctexmid  13841
  Copyright terms: Public domain W3C validator