ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foeq3 Unicode version

Theorem foeq3 5481
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq3  |-  ( A  =  B  ->  ( F : C -onto-> A  <->  F : C -onto-> B ) )

Proof of Theorem foeq3
StepHypRef Expression
1 eqeq2 2206 . . 3  |-  ( A  =  B  ->  ( ran  F  =  A  <->  ran  F  =  B ) )
21anbi2d 464 . 2  |-  ( A  =  B  ->  (
( F  Fn  C  /\  ran  F  =  A )  <->  ( F  Fn  C  /\  ran  F  =  B ) ) )
3 df-fo 5265 . 2  |-  ( F : C -onto-> A  <->  ( F  Fn  C  /\  ran  F  =  A ) )
4 df-fo 5265 . 2  |-  ( F : C -onto-> B  <->  ( F  Fn  C  /\  ran  F  =  B ) )
52, 3, 43bitr4g 223 1  |-  ( A  =  B  ->  ( F : C -onto-> A  <->  F : C -onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   ran crn 4665    Fn wfn 5254   -onto->wfo 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-fo 5265
This theorem is referenced by:  fimadmfo  5492  f1oeq3  5497  foeq123d  5500  resdif  5529  ffoss  5539  fifo  7055  enumct  7190  ctssexmid  7225  exmidfodomrlemr  7281  exmidfodomrlemrALT  7282  qnnen  12673  ctiunctal  12683  unct  12684  quslem  13026  znzrhfo  14280  gausslemma2dlem1f1o  15385  subctctexmid  15731
  Copyright terms: Public domain W3C validator