ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foeq3 Unicode version

Theorem foeq3 5518
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq3  |-  ( A  =  B  ->  ( F : C -onto-> A  <->  F : C -onto-> B ) )

Proof of Theorem foeq3
StepHypRef Expression
1 eqeq2 2217 . . 3  |-  ( A  =  B  ->  ( ran  F  =  A  <->  ran  F  =  B ) )
21anbi2d 464 . 2  |-  ( A  =  B  ->  (
( F  Fn  C  /\  ran  F  =  A )  <->  ( F  Fn  C  /\  ran  F  =  B ) ) )
3 df-fo 5296 . 2  |-  ( F : C -onto-> A  <->  ( F  Fn  C  /\  ran  F  =  A ) )
4 df-fo 5296 . 2  |-  ( F : C -onto-> B  <->  ( F  Fn  C  /\  ran  F  =  B ) )
52, 3, 43bitr4g 223 1  |-  ( A  =  B  ->  ( F : C -onto-> A  <->  F : C -onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   ran crn 4694    Fn wfn 5285   -onto->wfo 5288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-cleq 2200  df-fo 5296
This theorem is referenced by:  fimadmfo  5529  f1oeq3  5534  foeq123d  5537  resdif  5566  ffoss  5576  fifo  7108  enumct  7243  ctssexmid  7278  exmidfodomrlemr  7341  exmidfodomrlemrALT  7342  qnnen  12917  ctiunctal  12927  unct  12928  quslem  13271  znzrhfo  14525  gausslemma2dlem1f1o  15652  subctctexmid  16139
  Copyright terms: Public domain W3C validator