| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foeq3 | Unicode version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2206 |
. . 3
| |
| 2 | 1 | anbi2d 464 |
. 2
|
| 3 | df-fo 5265 |
. 2
| |
| 4 | df-fo 5265 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fo 5265 |
| This theorem is referenced by: fimadmfo 5492 f1oeq3 5497 foeq123d 5500 resdif 5529 ffoss 5539 fifo 7055 enumct 7190 ctssexmid 7225 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 qnnen 12673 ctiunctal 12683 unct 12684 quslem 13026 znzrhfo 14280 gausslemma2dlem1f1o 15385 subctctexmid 15731 |
| Copyright terms: Public domain | W3C validator |