| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foeq3 | Unicode version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2215 |
. . 3
| |
| 2 | 1 | anbi2d 464 |
. 2
|
| 3 | df-fo 5278 |
. 2
| |
| 4 | df-fo 5278 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-fo 5278 |
| This theorem is referenced by: fimadmfo 5509 f1oeq3 5514 foeq123d 5517 resdif 5546 ffoss 5556 fifo 7084 enumct 7219 ctssexmid 7254 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 qnnen 12835 ctiunctal 12845 unct 12846 quslem 13189 znzrhfo 14443 gausslemma2dlem1f1o 15570 subctctexmid 15974 |
| Copyright terms: Public domain | W3C validator |