ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposfo Unicode version

Theorem tposfo 6247
Description: The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposfo  |-  ( F : ( A  X.  B ) -onto-> C  -> tpos  F : ( B  X.  A ) -onto-> C )

Proof of Theorem tposfo
StepHypRef Expression
1 relxp 4718 . . 3  |-  Rel  ( A  X.  B )
2 tposfo2 6243 . . 3  |-  ( Rel  ( A  X.  B
)  ->  ( F : ( A  X.  B ) -onto-> C  -> tpos  F : `' ( A  X.  B ) -onto-> C ) )
31, 2ax-mp 5 . 2  |-  ( F : ( A  X.  B ) -onto-> C  -> tpos  F : `' ( A  X.  B ) -onto-> C )
4 cnvxp 5027 . . 3  |-  `' ( A  X.  B )  =  ( B  X.  A )
5 foeq2 5415 . . 3  |-  ( `' ( A  X.  B
)  =  ( B  X.  A )  -> 
(tpos  F : `' ( A  X.  B
) -onto-> C  <-> tpos  F : ( B  X.  A ) -onto-> C ) )
64, 5ax-mp 5 . 2  |-  (tpos  F : `' ( A  X.  B ) -onto-> C  <-> tpos  F : ( B  X.  A )
-onto-> C )
73, 6sylib 121 1  |-  ( F : ( A  X.  B ) -onto-> C  -> tpos  F : ( B  X.  A ) -onto-> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    X. cxp 4607   `'ccnv 4608   Rel wrel 4614   -onto->wfo 5194  tpos ctpos 6220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-fo 5202  df-fv 5204  df-tpos 6221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator