Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > foeq1 | Unicode version |
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
foeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1 5286 | . . 3 | |
2 | rneq 4838 | . . . 4 | |
3 | 2 | eqeq1d 2179 | . . 3 |
4 | 1, 3 | anbi12d 470 | . 2 |
5 | df-fo 5204 | . 2 | |
6 | df-fo 5204 | . 2 | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 crn 4612 wfn 5193 wfo 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-fo 5204 |
This theorem is referenced by: f1oeq1 5431 foeq123d 5436 resdif 5464 dif1en 6857 0ct 7084 ctmlemr 7085 ctm 7086 ctssdclemn0 7087 ctssdclemr 7089 ctssdc 7090 enumct 7092 omct 7094 ctssexmid 7126 exmidfodomrlemim 7178 ennnfonelemim 12379 ctinfomlemom 12382 ctinfom 12383 ctinf 12385 qnnen 12386 enctlem 12387 ctiunct 12395 omctfn 12398 ssomct 12400 mndfo 12675 subctctexmid 14034 |
Copyright terms: Public domain | W3C validator |