Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > foeq1 | Unicode version |
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
foeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1 5275 | . . 3 | |
2 | rneq 4830 | . . . 4 | |
3 | 2 | eqeq1d 2174 | . . 3 |
4 | 1, 3 | anbi12d 465 | . 2 |
5 | df-fo 5193 | . 2 | |
6 | df-fo 5193 | . 2 | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 crn 4604 wfn 5182 wfo 5185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-br 3982 df-opab 4043 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-fun 5189 df-fn 5190 df-fo 5193 |
This theorem is referenced by: f1oeq1 5420 foeq123d 5425 resdif 5453 dif1en 6841 0ct 7068 ctmlemr 7069 ctm 7070 ctssdclemn0 7071 ctssdclemr 7073 ctssdc 7074 enumct 7076 omct 7078 ctssexmid 7110 exmidfodomrlemim 7153 ennnfonelemim 12353 ctinfomlemom 12356 ctinfom 12357 ctinf 12359 qnnen 12360 enctlem 12361 ctiunct 12369 omctfn 12372 ssomct 12374 subctctexmid 13841 |
Copyright terms: Public domain | W3C validator |