| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foeq1 | Unicode version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 5347 |
. . 3
| |
| 2 | rneq 4894 |
. . . 4
| |
| 3 | 2 | eqeq1d 2205 |
. . 3
|
| 4 | 1, 3 | anbi12d 473 |
. 2
|
| 5 | df-fo 5265 |
. 2
| |
| 6 | df-fo 5265 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-fo 5265 |
| This theorem is referenced by: f1oeq1 5495 foeq123d 5500 resdif 5529 dif1en 6949 0ct 7182 ctmlemr 7183 ctm 7184 ctssdclemn0 7185 ctssdclemr 7187 ctssdc 7188 enumct 7190 omct 7192 ctssexmid 7225 exmidfodomrlemim 7280 nninfct 12233 ennnfonelemim 12666 ctinfomlemom 12669 ctinfom 12670 ctinf 12672 qnnen 12673 enctlem 12674 ctiunct 12682 omctfn 12685 ssomct 12687 mndfo 13141 znzrhfo 14280 subctctexmid 15731 domomsubct 15732 |
| Copyright terms: Public domain | W3C validator |