| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foeq1 | Unicode version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 5346 |
. . 3
| |
| 2 | rneq 4893 |
. . . 4
| |
| 3 | 2 | eqeq1d 2205 |
. . 3
|
| 4 | 1, 3 | anbi12d 473 |
. 2
|
| 5 | df-fo 5264 |
. 2
| |
| 6 | df-fo 5264 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-fo 5264 |
| This theorem is referenced by: f1oeq1 5492 foeq123d 5497 resdif 5526 dif1en 6940 0ct 7173 ctmlemr 7174 ctm 7175 ctssdclemn0 7176 ctssdclemr 7178 ctssdc 7179 enumct 7181 omct 7183 ctssexmid 7216 exmidfodomrlemim 7268 nninfct 12208 ennnfonelemim 12641 ctinfomlemom 12644 ctinfom 12645 ctinf 12647 qnnen 12648 enctlem 12649 ctiunct 12657 omctfn 12660 ssomct 12662 mndfo 13080 znzrhfo 14204 subctctexmid 15645 |
| Copyright terms: Public domain | W3C validator |