Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > foeq1 | Unicode version |
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
foeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1 5284 | . . 3 | |
2 | rneq 4836 | . . . 4 | |
3 | 2 | eqeq1d 2179 | . . 3 |
4 | 1, 3 | anbi12d 470 | . 2 |
5 | df-fo 5202 | . 2 | |
6 | df-fo 5202 | . 2 | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 crn 4610 wfn 5191 wfo 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-fun 5198 df-fn 5199 df-fo 5202 |
This theorem is referenced by: f1oeq1 5429 foeq123d 5434 resdif 5462 dif1en 6853 0ct 7080 ctmlemr 7081 ctm 7082 ctssdclemn0 7083 ctssdclemr 7085 ctssdc 7086 enumct 7088 omct 7090 ctssexmid 7122 exmidfodomrlemim 7165 ennnfonelemim 12366 ctinfomlemom 12369 ctinfom 12370 ctinf 12372 qnnen 12373 enctlem 12374 ctiunct 12382 omctfn 12385 ssomct 12387 mndfo 12662 subctctexmid 13994 |
Copyright terms: Public domain | W3C validator |