| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foeq1 | Unicode version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 5409 |
. . 3
| |
| 2 | rneq 4951 |
. . . 4
| |
| 3 | 2 | eqeq1d 2238 |
. . 3
|
| 4 | 1, 3 | anbi12d 473 |
. 2
|
| 5 | df-fo 5324 |
. 2
| |
| 6 | df-fo 5324 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-fo 5324 |
| This theorem is referenced by: f1oeq1 5560 foeq123d 5565 resdif 5594 dif1en 7041 0ct 7274 ctmlemr 7275 ctm 7276 ctssdclemn0 7277 ctssdclemr 7279 ctssdc 7280 enumct 7282 omct 7284 ctssexmid 7317 exmidfodomrlemim 7379 nninfct 12562 ennnfonelemim 12995 ctinfomlemom 12998 ctinfom 12999 ctinf 13001 qnnen 13002 enctlem 13003 ctiunct 13011 omctfn 13014 ssomct 13016 mndfo 13472 znzrhfo 14612 subctctexmid 16366 domomsubct 16367 |
| Copyright terms: Public domain | W3C validator |