| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foeq1 | Unicode version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 5363 |
. . 3
| |
| 2 | rneq 4906 |
. . . 4
| |
| 3 | 2 | eqeq1d 2214 |
. . 3
|
| 4 | 1, 3 | anbi12d 473 |
. 2
|
| 5 | df-fo 5278 |
. 2
| |
| 6 | df-fo 5278 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-fun 5274 df-fn 5275 df-fo 5278 |
| This theorem is referenced by: f1oeq1 5512 foeq123d 5517 resdif 5546 dif1en 6978 0ct 7211 ctmlemr 7212 ctm 7213 ctssdclemn0 7214 ctssdclemr 7216 ctssdc 7217 enumct 7219 omct 7221 ctssexmid 7254 exmidfodomrlemim 7311 nninfct 12395 ennnfonelemim 12828 ctinfomlemom 12831 ctinfom 12832 ctinf 12834 qnnen 12835 enctlem 12836 ctiunct 12844 omctfn 12847 ssomct 12849 mndfo 13304 znzrhfo 14443 subctctexmid 15974 domomsubct 15975 |
| Copyright terms: Public domain | W3C validator |