ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foeq123d Unicode version

Theorem foeq123d 5565
Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
f1eq123d.1  |-  ( ph  ->  F  =  G )
f1eq123d.2  |-  ( ph  ->  A  =  B )
f1eq123d.3  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
foeq123d  |-  ( ph  ->  ( F : A -onto-> C 
<->  G : B -onto-> D
) )

Proof of Theorem foeq123d
StepHypRef Expression
1 f1eq123d.1 . . 3  |-  ( ph  ->  F  =  G )
2 foeq1 5544 . . 3  |-  ( F  =  G  ->  ( F : A -onto-> C  <->  G : A -onto-> C ) )
31, 2syl 14 . 2  |-  ( ph  ->  ( F : A -onto-> C 
<->  G : A -onto-> C
) )
4 f1eq123d.2 . . 3  |-  ( ph  ->  A  =  B )
5 foeq2 5545 . . 3  |-  ( A  =  B  ->  ( G : A -onto-> C  <->  G : B -onto-> C ) )
64, 5syl 14 . 2  |-  ( ph  ->  ( G : A -onto-> C 
<->  G : B -onto-> C
) )
7 f1eq123d.3 . . 3  |-  ( ph  ->  C  =  D )
8 foeq3 5546 . . 3  |-  ( C  =  D  ->  ( G : B -onto-> C  <->  G : B -onto-> D ) )
97, 8syl 14 . 2  |-  ( ph  ->  ( G : B -onto-> C 
<->  G : B -onto-> D
) )
103, 6, 93bitrd 214 1  |-  ( ph  ->  ( F : A -onto-> C 
<->  G : B -onto-> D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   -onto->wfo 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-fo 5324
This theorem is referenced by:  ctssexmid  7317  ctiunctal  13012  unct  13013
  Copyright terms: Public domain W3C validator