| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resttopon | Unicode version | ||
| Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| resttopon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 14601 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | id 19 |
. . . 4
| |
| 4 | toponmax 14612 |
. . . 4
| |
| 5 | ssexg 4199 |
. . . 4
| |
| 6 | 3, 4, 5 | syl2anr 290 |
. . 3
|
| 7 | resttop 14757 |
. . 3
| |
| 8 | 2, 6, 7 | syl2anc 411 |
. 2
|
| 9 | simpr 110 |
. . . . . 6
| |
| 10 | sseqin2 3400 |
. . . . . 6
| |
| 11 | 9, 10 | sylib 122 |
. . . . 5
|
| 12 | simpl 109 |
. . . . . 6
| |
| 13 | 4 | adantr 276 |
. . . . . 6
|
| 14 | elrestr 13194 |
. . . . . 6
| |
| 15 | 12, 6, 13, 14 | syl3anc 1250 |
. . . . 5
|
| 16 | 11, 15 | eqeltrrd 2285 |
. . . 4
|
| 17 | elssuni 3892 |
. . . 4
| |
| 18 | 16, 17 | syl 14 |
. . 3
|
| 19 | restval 13192 |
. . . . . 6
| |
| 20 | 6, 19 | syldan 282 |
. . . . 5
|
| 21 | inss2 3402 |
. . . . . . . . 9
| |
| 22 | vex 2779 |
. . . . . . . . . . 11
| |
| 23 | 22 | inex1 4194 |
. . . . . . . . . 10
|
| 24 | 23 | elpw 3632 |
. . . . . . . . 9
|
| 25 | 21, 24 | mpbir 146 |
. . . . . . . 8
|
| 26 | 25 | a1i 9 |
. . . . . . 7
|
| 27 | 26 | fmpttd 5758 |
. . . . . 6
|
| 28 | 27 | frnd 5455 |
. . . . 5
|
| 29 | 20, 28 | eqsstrd 3237 |
. . . 4
|
| 30 | sspwuni 4026 |
. . . 4
| |
| 31 | 29, 30 | sylib 122 |
. . 3
|
| 32 | 18, 31 | eqssd 3218 |
. 2
|
| 33 | istopon 14600 |
. 2
| |
| 34 | 8, 32, 33 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-rest 13188 df-topgen 13207 df-top 14585 df-topon 14598 df-bases 14630 |
| This theorem is referenced by: restuni 14759 stoig 14760 cnrest 14822 cnrest2 14823 cnrest2r 14824 cnptopresti 14825 cnptoprest 14826 cnptoprest2 14827 divcnap 15152 cncfmpt2fcntop 15186 cnplimcim 15254 cnlimcim 15258 cnlimc 15259 limccnpcntop 15262 limccnp2lem 15263 limccnp2cntop 15264 dvfvalap 15268 dvbss 15272 dvfgg 15275 dvcnp2cntop 15286 dvcn 15287 dvaddxxbr 15288 dvmulxxbr 15289 dvmptfsum 15312 |
| Copyright terms: Public domain | W3C validator |