| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resttopon | Unicode version | ||
| Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| resttopon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 14334 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | id 19 |
. . . 4
| |
| 4 | toponmax 14345 |
. . . 4
| |
| 5 | ssexg 4173 |
. . . 4
| |
| 6 | 3, 4, 5 | syl2anr 290 |
. . 3
|
| 7 | resttop 14490 |
. . 3
| |
| 8 | 2, 6, 7 | syl2anc 411 |
. 2
|
| 9 | simpr 110 |
. . . . . 6
| |
| 10 | sseqin2 3383 |
. . . . . 6
| |
| 11 | 9, 10 | sylib 122 |
. . . . 5
|
| 12 | simpl 109 |
. . . . . 6
| |
| 13 | 4 | adantr 276 |
. . . . . 6
|
| 14 | elrestr 12949 |
. . . . . 6
| |
| 15 | 12, 6, 13, 14 | syl3anc 1249 |
. . . . 5
|
| 16 | 11, 15 | eqeltrrd 2274 |
. . . 4
|
| 17 | elssuni 3868 |
. . . 4
| |
| 18 | 16, 17 | syl 14 |
. . 3
|
| 19 | restval 12947 |
. . . . . 6
| |
| 20 | 6, 19 | syldan 282 |
. . . . 5
|
| 21 | inss2 3385 |
. . . . . . . . 9
| |
| 22 | vex 2766 |
. . . . . . . . . . 11
| |
| 23 | 22 | inex1 4168 |
. . . . . . . . . 10
|
| 24 | 23 | elpw 3612 |
. . . . . . . . 9
|
| 25 | 21, 24 | mpbir 146 |
. . . . . . . 8
|
| 26 | 25 | a1i 9 |
. . . . . . 7
|
| 27 | 26 | fmpttd 5720 |
. . . . . 6
|
| 28 | 27 | frnd 5420 |
. . . . 5
|
| 29 | 20, 28 | eqsstrd 3220 |
. . . 4
|
| 30 | sspwuni 4002 |
. . . 4
| |
| 31 | 29, 30 | sylib 122 |
. . 3
|
| 32 | 18, 31 | eqssd 3201 |
. 2
|
| 33 | istopon 14333 |
. 2
| |
| 34 | 8, 32, 33 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-rest 12943 df-topgen 12962 df-top 14318 df-topon 14331 df-bases 14363 |
| This theorem is referenced by: restuni 14492 stoig 14493 cnrest 14555 cnrest2 14556 cnrest2r 14557 cnptopresti 14558 cnptoprest 14559 cnptoprest2 14560 divcnap 14885 cncfmpt2fcntop 14919 cnplimcim 14987 cnlimcim 14991 cnlimc 14992 limccnpcntop 14995 limccnp2lem 14996 limccnp2cntop 14997 dvfvalap 15001 dvbss 15005 dvfgg 15008 dvcnp2cntop 15019 dvcn 15020 dvaddxxbr 15021 dvmulxxbr 15022 dvmptfsum 15045 |
| Copyright terms: Public domain | W3C validator |