ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resttopon Unicode version

Theorem resttopon 14339
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
resttopon  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )

Proof of Theorem resttopon
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 topontop 14182 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
21adantr 276 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  J  e.  Top )
3 id 19 . . . 4  |-  ( A 
C_  X  ->  A  C_  X )
4 toponmax 14193 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
5 ssexg 4168 . . . 4  |-  ( ( A  C_  X  /\  X  e.  J )  ->  A  e.  _V )
63, 4, 5syl2anr 290 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  e.  _V )
7 resttop 14338 . . 3  |-  ( ( J  e.  Top  /\  A  e.  _V )  ->  ( Jt  A )  e.  Top )
82, 6, 7syl2anc 411 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  Top )
9 simpr 110 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  C_  X )
10 sseqin2 3378 . . . . . 6  |-  ( A 
C_  X  <->  ( X  i^i  A )  =  A )
119, 10sylib 122 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( X  i^i  A )  =  A )
12 simpl 109 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  J  e.  (TopOn `  X )
)
134adantr 276 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  X  e.  J )
14 elrestr 12858 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  _V  /\  X  e.  J )  ->  ( X  i^i  A )  e.  ( Jt  A ) )
1512, 6, 13, 14syl3anc 1249 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( X  i^i  A )  e.  ( Jt  A ) )
1611, 15eqeltrrd 2271 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  e.  ( Jt  A ) )
17 elssuni 3863 . . . 4  |-  ( A  e.  ( Jt  A )  ->  A  C_  U. ( Jt  A ) )
1816, 17syl 14 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  C_ 
U. ( Jt  A ) )
19 restval 12856 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  _V )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A
) ) )
206, 19syldan 282 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A
) ) )
21 inss2 3380 . . . . . . . . 9  |-  ( x  i^i  A )  C_  A
22 vex 2763 . . . . . . . . . . 11  |-  x  e. 
_V
2322inex1 4163 . . . . . . . . . 10  |-  ( x  i^i  A )  e. 
_V
2423elpw 3607 . . . . . . . . 9  |-  ( ( x  i^i  A )  e.  ~P A  <->  ( x  i^i  A )  C_  A
)
2521, 24mpbir 146 . . . . . . . 8  |-  ( x  i^i  A )  e. 
~P A
2625a1i 9 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  x  e.  J )  ->  (
x  i^i  A )  e.  ~P A )
2726fmpttd 5713 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
x  e.  J  |->  ( x  i^i  A ) ) : J --> ~P A
)
2827frnd 5413 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ran  ( x  e.  J  |->  ( x  i^i  A
) )  C_  ~P A )
2920, 28eqsstrd 3215 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  C_  ~P A )
30 sspwuni 3997 . . . 4  |-  ( ( Jt  A )  C_  ~P A 
<-> 
U. ( Jt  A ) 
C_  A )
3129, 30sylib 122 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  U. ( Jt  A )  C_  A
)
3218, 31eqssd 3196 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  =  U. ( Jt  A ) )
33 istopon 14181 . 2  |-  ( ( Jt  A )  e.  (TopOn `  A )  <->  ( ( Jt  A )  e.  Top  /\  A  =  U. ( Jt  A ) ) )
348, 32, 33sylanbrc 417 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3152    C_ wss 3153   ~Pcpw 3601   U.cuni 3835    |-> cmpt 4090   ran crn 4660   ` cfv 5254  (class class class)co 5918   ↾t crest 12850   Topctop 14165  TopOnctopon 14178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-rest 12852  df-topgen 12871  df-top 14166  df-topon 14179  df-bases 14211
This theorem is referenced by:  restuni  14340  stoig  14341  cnrest  14403  cnrest2  14404  cnrest2r  14405  cnptopresti  14406  cnptoprest  14407  cnptoprest2  14408  divcnap  14723  cncfmpt2fcntop  14753  cnplimcim  14821  cnlimcim  14825  cnlimc  14826  limccnpcntop  14829  limccnp2lem  14830  limccnp2cntop  14831  dvfvalap  14835  dvbss  14839  dvfgg  14842  dvcnp2cntop  14848  dvcn  14849  dvaddxxbr  14850  dvmulxxbr  14851
  Copyright terms: Public domain W3C validator