| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resttopon | Unicode version | ||
| Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| resttopon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 14682 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | id 19 |
. . . 4
| |
| 4 | toponmax 14693 |
. . . 4
| |
| 5 | ssexg 4222 |
. . . 4
| |
| 6 | 3, 4, 5 | syl2anr 290 |
. . 3
|
| 7 | resttop 14838 |
. . 3
| |
| 8 | 2, 6, 7 | syl2anc 411 |
. 2
|
| 9 | simpr 110 |
. . . . . 6
| |
| 10 | sseqin2 3423 |
. . . . . 6
| |
| 11 | 9, 10 | sylib 122 |
. . . . 5
|
| 12 | simpl 109 |
. . . . . 6
| |
| 13 | 4 | adantr 276 |
. . . . . 6
|
| 14 | elrestr 13275 |
. . . . . 6
| |
| 15 | 12, 6, 13, 14 | syl3anc 1271 |
. . . . 5
|
| 16 | 11, 15 | eqeltrrd 2307 |
. . . 4
|
| 17 | elssuni 3915 |
. . . 4
| |
| 18 | 16, 17 | syl 14 |
. . 3
|
| 19 | restval 13273 |
. . . . . 6
| |
| 20 | 6, 19 | syldan 282 |
. . . . 5
|
| 21 | inss2 3425 |
. . . . . . . . 9
| |
| 22 | vex 2802 |
. . . . . . . . . . 11
| |
| 23 | 22 | inex1 4217 |
. . . . . . . . . 10
|
| 24 | 23 | elpw 3655 |
. . . . . . . . 9
|
| 25 | 21, 24 | mpbir 146 |
. . . . . . . 8
|
| 26 | 25 | a1i 9 |
. . . . . . 7
|
| 27 | 26 | fmpttd 5789 |
. . . . . 6
|
| 28 | 27 | frnd 5482 |
. . . . 5
|
| 29 | 20, 28 | eqsstrd 3260 |
. . . 4
|
| 30 | sspwuni 4049 |
. . . 4
| |
| 31 | 29, 30 | sylib 122 |
. . 3
|
| 32 | 18, 31 | eqssd 3241 |
. 2
|
| 33 | istopon 14681 |
. 2
| |
| 34 | 8, 32, 33 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-rest 13269 df-topgen 13288 df-top 14666 df-topon 14679 df-bases 14711 |
| This theorem is referenced by: restuni 14840 stoig 14841 cnrest 14903 cnrest2 14904 cnrest2r 14905 cnptopresti 14906 cnptoprest 14907 cnptoprest2 14908 divcnap 15233 cncfmpt2fcntop 15267 cnplimcim 15335 cnlimcim 15339 cnlimc 15340 limccnpcntop 15343 limccnp2lem 15344 limccnp2cntop 15345 dvfvalap 15349 dvbss 15353 dvfgg 15356 dvcnp2cntop 15367 dvcn 15368 dvaddxxbr 15369 dvmulxxbr 15370 dvmptfsum 15393 |
| Copyright terms: Public domain | W3C validator |