Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resttopon | Unicode version |
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
resttopon | TopOn ↾t TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 12806 | . . . 4 TopOn | |
2 | 1 | adantr 274 | . . 3 TopOn |
3 | id 19 | . . . 4 | |
4 | toponmax 12817 | . . . 4 TopOn | |
5 | ssexg 4128 | . . . 4 | |
6 | 3, 4, 5 | syl2anr 288 | . . 3 TopOn |
7 | resttop 12964 | . . 3 ↾t | |
8 | 2, 6, 7 | syl2anc 409 | . 2 TopOn ↾t |
9 | simpr 109 | . . . . . 6 TopOn | |
10 | sseqin2 3346 | . . . . . 6 | |
11 | 9, 10 | sylib 121 | . . . . 5 TopOn |
12 | simpl 108 | . . . . . 6 TopOn TopOn | |
13 | 4 | adantr 274 | . . . . . 6 TopOn |
14 | elrestr 12587 | . . . . . 6 TopOn ↾t | |
15 | 12, 6, 13, 14 | syl3anc 1233 | . . . . 5 TopOn ↾t |
16 | 11, 15 | eqeltrrd 2248 | . . . 4 TopOn ↾t |
17 | elssuni 3824 | . . . 4 ↾t ↾t | |
18 | 16, 17 | syl 14 | . . 3 TopOn ↾t |
19 | restval 12585 | . . . . . 6 TopOn ↾t | |
20 | 6, 19 | syldan 280 | . . . . 5 TopOn ↾t |
21 | inss2 3348 | . . . . . . . . 9 | |
22 | vex 2733 | . . . . . . . . . . 11 | |
23 | 22 | inex1 4123 | . . . . . . . . . 10 |
24 | 23 | elpw 3572 | . . . . . . . . 9 |
25 | 21, 24 | mpbir 145 | . . . . . . . 8 |
26 | 25 | a1i 9 | . . . . . . 7 TopOn |
27 | 26 | fmpttd 5651 | . . . . . 6 TopOn |
28 | 27 | frnd 5357 | . . . . 5 TopOn |
29 | 20, 28 | eqsstrd 3183 | . . . 4 TopOn ↾t |
30 | sspwuni 3957 | . . . 4 ↾t ↾t | |
31 | 29, 30 | sylib 121 | . . 3 TopOn ↾t |
32 | 18, 31 | eqssd 3164 | . 2 TopOn ↾t |
33 | istopon 12805 | . 2 ↾t TopOn ↾t ↾t | |
34 | 8, 32, 33 | sylanbrc 415 | 1 TopOn ↾t TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 cin 3120 wss 3121 cpw 3566 cuni 3796 cmpt 4050 crn 4612 cfv 5198 (class class class)co 5853 ↾t crest 12579 ctop 12789 TopOnctopon 12802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-rest 12581 df-topgen 12600 df-top 12790 df-topon 12803 df-bases 12835 |
This theorem is referenced by: restuni 12966 stoig 12967 cnrest 13029 cnrest2 13030 cnrest2r 13031 cnptopresti 13032 cnptoprest 13033 cnptoprest2 13034 divcnap 13349 cncfmpt2fcntop 13379 cnplimcim 13430 cnlimcim 13434 cnlimc 13435 limccnpcntop 13438 limccnp2lem 13439 limccnp2cntop 13440 dvfvalap 13444 dvbss 13448 dvfgg 13451 dvcnp2cntop 13457 dvcn 13458 dvaddxxbr 13459 dvmulxxbr 13460 |
Copyright terms: Public domain | W3C validator |