Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resttopon | Unicode version |
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
resttopon | TopOn ↾t TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 12652 | . . . 4 TopOn | |
2 | 1 | adantr 274 | . . 3 TopOn |
3 | id 19 | . . . 4 | |
4 | toponmax 12663 | . . . 4 TopOn | |
5 | ssexg 4121 | . . . 4 | |
6 | 3, 4, 5 | syl2anr 288 | . . 3 TopOn |
7 | resttop 12810 | . . 3 ↾t | |
8 | 2, 6, 7 | syl2anc 409 | . 2 TopOn ↾t |
9 | simpr 109 | . . . . . 6 TopOn | |
10 | sseqin2 3341 | . . . . . 6 | |
11 | 9, 10 | sylib 121 | . . . . 5 TopOn |
12 | simpl 108 | . . . . . 6 TopOn TopOn | |
13 | 4 | adantr 274 | . . . . . 6 TopOn |
14 | elrestr 12564 | . . . . . 6 TopOn ↾t | |
15 | 12, 6, 13, 14 | syl3anc 1228 | . . . . 5 TopOn ↾t |
16 | 11, 15 | eqeltrrd 2244 | . . . 4 TopOn ↾t |
17 | elssuni 3817 | . . . 4 ↾t ↾t | |
18 | 16, 17 | syl 14 | . . 3 TopOn ↾t |
19 | restval 12562 | . . . . . 6 TopOn ↾t | |
20 | 6, 19 | syldan 280 | . . . . 5 TopOn ↾t |
21 | inss2 3343 | . . . . . . . . 9 | |
22 | vex 2729 | . . . . . . . . . . 11 | |
23 | 22 | inex1 4116 | . . . . . . . . . 10 |
24 | 23 | elpw 3565 | . . . . . . . . 9 |
25 | 21, 24 | mpbir 145 | . . . . . . . 8 |
26 | 25 | a1i 9 | . . . . . . 7 TopOn |
27 | 26 | fmpttd 5640 | . . . . . 6 TopOn |
28 | 27 | frnd 5347 | . . . . 5 TopOn |
29 | 20, 28 | eqsstrd 3178 | . . . 4 TopOn ↾t |
30 | sspwuni 3950 | . . . 4 ↾t ↾t | |
31 | 29, 30 | sylib 121 | . . 3 TopOn ↾t |
32 | 18, 31 | eqssd 3159 | . 2 TopOn ↾t |
33 | istopon 12651 | . 2 ↾t TopOn ↾t ↾t | |
34 | 8, 32, 33 | sylanbrc 414 | 1 TopOn ↾t TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cvv 2726 cin 3115 wss 3116 cpw 3559 cuni 3789 cmpt 4043 crn 4605 cfv 5188 (class class class)co 5842 ↾t crest 12556 ctop 12635 TopOnctopon 12648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-rest 12558 df-topgen 12577 df-top 12636 df-topon 12649 df-bases 12681 |
This theorem is referenced by: restuni 12812 stoig 12813 cnrest 12875 cnrest2 12876 cnrest2r 12877 cnptopresti 12878 cnptoprest 12879 cnptoprest2 12880 divcnap 13195 cncfmpt2fcntop 13225 cnplimcim 13276 cnlimcim 13280 cnlimc 13281 limccnpcntop 13284 limccnp2lem 13285 limccnp2cntop 13286 dvfvalap 13290 dvbss 13294 dvfgg 13297 dvcnp2cntop 13303 dvcn 13304 dvaddxxbr 13305 dvmulxxbr 13306 |
Copyright terms: Public domain | W3C validator |