ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unirnbl Unicode version

Theorem unirnbl 14063
Description: The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
unirnbl  |-  ( D  e.  ( *Met `  X )  ->  U. ran  ( ball `  D )  =  X )

Proof of Theorem unirnbl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 blf 14050 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
21frnd 5377 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ran  ( ball `  D )  C_ 
~P X )
3 sspwuni 3973 . . 3  |-  ( ran  ( ball `  D
)  C_  ~P X  <->  U.
ran  ( ball `  D
)  C_  X )
42, 3sylib 122 . 2  |-  ( D  e.  ( *Met `  X )  ->  U. ran  ( ball `  D )  C_  X )
5 1rp 9660 . . . 4  |-  1  e.  RR+
6 blcntr 14056 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  1  e.  RR+ )  ->  x  e.  ( x ( ball `  D
) 1 ) )
75, 6mp3an3 1326 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  x  e.  ( x ( ball `  D ) 1 ) )
8 rpxr 9664 . . . . 5  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
95, 8ax-mp 5 . . . 4  |-  1  e.  RR*
10 blelrn 14060 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  1  e.  RR* )  ->  ( x ( ball `  D ) 1 )  e.  ran  ( ball `  D ) )
119, 10mp3an3 1326 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( x
( ball `  D )
1 )  e.  ran  ( ball `  D )
)
12 elunii 3816 . . 3  |-  ( ( x  e.  ( x ( ball `  D
) 1 )  /\  ( x ( ball `  D ) 1 )  e.  ran  ( ball `  D ) )  ->  x  e.  U. ran  ( ball `  D ) )
137, 11, 12syl2anc 411 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  x  e.  U.
ran  ( ball `  D
) )
144, 13eqelssd 3176 1  |-  ( D  e.  ( *Met `  X )  ->  U. ran  ( ball `  D )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    C_ wss 3131   ~Pcpw 3577   U.cuni 3811    X. cxp 4626   ran crn 4629   ` cfv 5218  (class class class)co 5878   1c1 7815   RR*cxr 7994   RR+crp 9656   *Metcxmet 13580   ballcbl 13582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911  ax-0lt1 7920  ax-rnegex 7923
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-map 6653  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-rp 9657  df-psmet 13587  df-xmet 13588  df-bl 13590
This theorem is referenced by:  blbas  14073  mopntopon  14083  elmopn  14086  metss  14134  xmettx  14150
  Copyright terms: Public domain W3C validator