ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmima Unicode version

Theorem mhmima 13323
Description: The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
mhmima  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( F " X )  e.  (SubMnd `  N ) )

Proof of Theorem mhmima
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5033 . . 3  |-  ( F
" X )  C_  ran  F
2 eqid 2205 . . . . . 6  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2205 . . . . . 6  |-  ( Base `  N )  =  (
Base `  N )
42, 3mhmf 13297 . . . . 5  |-  ( F  e.  ( M MndHom  N
)  ->  F :
( Base `  M ) --> ( Base `  N )
)
54adantr 276 . . . 4  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  F :
( Base `  M ) --> ( Base `  N )
)
65frnd 5435 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ran  F  C_  ( Base `  N )
)
71, 6sstrid 3204 . 2  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( F " X )  C_  ( Base `  N ) )
8 eqid 2205 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
9 eqid 2205 . . . . 5  |-  ( 0g
`  N )  =  ( 0g `  N
)
108, 9mhm0 13300 . . . 4  |-  ( F  e.  ( M MndHom  N
)  ->  ( F `  ( 0g `  M
) )  =  ( 0g `  N ) )
1110adantr 276 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( F `  ( 0g `  M
) )  =  ( 0g `  N ) )
125ffnd 5426 . . . 4  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  F  Fn  ( Base `  M )
)
132submss 13308 . . . . 5  |-  ( X  e.  (SubMnd `  M
)  ->  X  C_  ( Base `  M ) )
1413adantl 277 . . . 4  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  X  C_  ( Base `  M ) )
158subm0cl 13310 . . . . 5  |-  ( X  e.  (SubMnd `  M
)  ->  ( 0g `  M )  e.  X
)
1615adantl 277 . . . 4  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( 0g `  M )  e.  X
)
17 fnfvima 5819 . . . 4  |-  ( ( F  Fn  ( Base `  M )  /\  X  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  X
)  ->  ( F `  ( 0g `  M
) )  e.  ( F " X ) )
1812, 14, 16, 17syl3anc 1250 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( F `  ( 0g `  M
) )  e.  ( F " X ) )
1911, 18eqeltrrd 2283 . 2  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( 0g `  N )  e.  ( F " X ) )
20 simpll 527 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  F  e.  ( M MndHom  N ) )
2114adantr 276 . . . . . . . . . 10  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  X  C_  ( Base `  M ) )
22 simprl 529 . . . . . . . . . 10  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  z  e.  X )
2321, 22sseldd 3194 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  z  e.  ( Base `  M )
)
24 simprr 531 . . . . . . . . . 10  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  x  e.  X )
2521, 24sseldd 3194 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  x  e.  ( Base `  M )
)
26 eqid 2205 . . . . . . . . . 10  |-  ( +g  `  M )  =  ( +g  `  M )
27 eqid 2205 . . . . . . . . . 10  |-  ( +g  `  N )  =  ( +g  `  N )
282, 26, 27mhmlin 13299 . . . . . . . . 9  |-  ( ( F  e.  ( M MndHom  N )  /\  z  e.  ( Base `  M
)  /\  x  e.  ( Base `  M )
)  ->  ( F `  ( z ( +g  `  M ) x ) )  =  ( ( F `  z ) ( +g  `  N
) ( F `  x ) ) )
2920, 23, 25, 28syl3anc 1250 . . . . . . . 8  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( F `  ( z ( +g  `  M ) x ) )  =  ( ( F `  z ) ( +g  `  N
) ( F `  x ) ) )
3012adantr 276 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  F  Fn  ( Base `  M )
)
3126submcl 13311 . . . . . . . . . . 11  |-  ( ( X  e.  (SubMnd `  M )  /\  z  e.  X  /\  x  e.  X )  ->  (
z ( +g  `  M
) x )  e.  X )
32313expb 1207 . . . . . . . . . 10  |-  ( ( X  e.  (SubMnd `  M )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( z
( +g  `  M ) x )  e.  X
)
3332adantll 476 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( z
( +g  `  M ) x )  e.  X
)
34 fnfvima 5819 . . . . . . . . 9  |-  ( ( F  Fn  ( Base `  M )  /\  X  C_  ( Base `  M
)  /\  ( z
( +g  `  M ) x )  e.  X
)  ->  ( F `  ( z ( +g  `  M ) x ) )  e.  ( F
" X ) )
3530, 21, 33, 34syl3anc 1250 . . . . . . . 8  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( F `  ( z ( +g  `  M ) x ) )  e.  ( F
" X ) )
3629, 35eqeltrrd 2283 . . . . . . 7  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) )
3736anassrs 400 . . . . . 6  |-  ( ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M ) )  /\  z  e.  X )  /\  x  e.  X
)  ->  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) )
3837ralrimiva 2579 . . . . 5  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  z  e.  X )  ->  A. x  e.  X  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) )
39 oveq2 5952 . . . . . . . . 9  |-  ( y  =  ( F `  x )  ->  (
( F `  z
) ( +g  `  N
) y )  =  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) ) )
4039eleq1d 2274 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
( ( F `  z ) ( +g  `  N ) y )  e.  ( F " X )  <->  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) ) )
4140ralima 5824 . . . . . . 7  |-  ( ( F  Fn  ( Base `  M )  /\  X  C_  ( Base `  M
) )  ->  ( A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
)  <->  A. x  e.  X  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) )  e.  ( F " X ) ) )
4212, 14, 41syl2anc 411 . . . . . 6  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( A. y  e.  ( F " X ) ( ( F `  z ) ( +g  `  N
) y )  e.  ( F " X
)  <->  A. x  e.  X  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) )  e.  ( F " X ) ) )
4342adantr 276 . . . . 5  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  z  e.  X )  ->  ( A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
)  <->  A. x  e.  X  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) )  e.  ( F " X ) ) )
4438, 43mpbird 167 . . . 4  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  z  e.  X )  ->  A. y  e.  ( F " X
) ( ( F `
 z ) ( +g  `  N ) y )  e.  ( F " X ) )
4544ralrimiva 2579 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  A. z  e.  X  A. y  e.  ( F " X
) ( ( F `
 z ) ( +g  `  N ) y )  e.  ( F " X ) )
46 oveq1 5951 . . . . . . 7  |-  ( x  =  ( F `  z )  ->  (
x ( +g  `  N
) y )  =  ( ( F `  z ) ( +g  `  N ) y ) )
4746eleq1d 2274 . . . . . 6  |-  ( x  =  ( F `  z )  ->  (
( x ( +g  `  N ) y )  e.  ( F " X )  <->  ( ( F `  z )
( +g  `  N ) y )  e.  ( F " X ) ) )
4847ralbidv 2506 . . . . 5  |-  ( x  =  ( F `  z )  ->  ( A. y  e.  ( F " X ) ( x ( +g  `  N
) y )  e.  ( F " X
)  <->  A. y  e.  ( F " X ) ( ( F `  z ) ( +g  `  N ) y )  e.  ( F " X ) ) )
4948ralima 5824 . . . 4  |-  ( ( F  Fn  ( Base `  M )  /\  X  C_  ( Base `  M
) )  ->  ( A. x  e.  ( F " X ) A. y  e.  ( F " X ) ( x ( +g  `  N
) y )  e.  ( F " X
)  <->  A. z  e.  X  A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
) ) )
5012, 14, 49syl2anc 411 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( A. x  e.  ( F " X ) A. y  e.  ( F " X
) ( x ( +g  `  N ) y )  e.  ( F " X )  <->  A. z  e.  X  A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
) ) )
5145, 50mpbird 167 . 2  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  A. x  e.  ( F " X
) A. y  e.  ( F " X
) ( x ( +g  `  N ) y )  e.  ( F " X ) )
52 mhmrcl2 13296 . . . 4  |-  ( F  e.  ( M MndHom  N
)  ->  N  e.  Mnd )
5352adantr 276 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  N  e.  Mnd )
543, 9, 27issubm 13304 . . 3  |-  ( N  e.  Mnd  ->  (
( F " X
)  e.  (SubMnd `  N )  <->  ( ( F " X )  C_  ( Base `  N )  /\  ( 0g `  N
)  e.  ( F
" X )  /\  A. x  e.  ( F
" X ) A. y  e.  ( F " X ) ( x ( +g  `  N
) y )  e.  ( F " X
) ) ) )
5553, 54syl 14 . 2  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( ( F " X )  e.  (SubMnd `  N )  <->  ( ( F " X
)  C_  ( Base `  N )  /\  ( 0g `  N )  e.  ( F " X
)  /\  A. x  e.  ( F " X
) A. y  e.  ( F " X
) ( x ( +g  `  N ) y )  e.  ( F " X ) ) ) )
567, 19, 51, 55mpbir3and 1183 1  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( F " X )  e.  (SubMnd `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   ran crn 4676   "cima 4678    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   0gc0g 13088   Mndcmnd 13248   MndHom cmhm 13289  SubMndcsubmnd 13290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-mhm 13291  df-submnd 13292
This theorem is referenced by:  rhmima  14013
  Copyright terms: Public domain W3C validator