ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmima Unicode version

Theorem mhmima 12735
Description: The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
mhmima  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( F " X )  e.  (SubMnd `  N ) )

Proof of Theorem mhmima
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 4974 . . 3  |-  ( F
" X )  C_  ran  F
2 eqid 2175 . . . . . 6  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2175 . . . . . 6  |-  ( Base `  N )  =  (
Base `  N )
42, 3mhmf 12717 . . . . 5  |-  ( F  e.  ( M MndHom  N
)  ->  F :
( Base `  M ) --> ( Base `  N )
)
54adantr 276 . . . 4  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  F :
( Base `  M ) --> ( Base `  N )
)
65frnd 5367 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ran  F  C_  ( Base `  N )
)
71, 6sstrid 3164 . 2  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( F " X )  C_  ( Base `  N ) )
8 eqid 2175 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
9 eqid 2175 . . . . 5  |-  ( 0g
`  N )  =  ( 0g `  N
)
108, 9mhm0 12720 . . . 4  |-  ( F  e.  ( M MndHom  N
)  ->  ( F `  ( 0g `  M
) )  =  ( 0g `  N ) )
1110adantr 276 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( F `  ( 0g `  M
) )  =  ( 0g `  N ) )
125ffnd 5358 . . . 4  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  F  Fn  ( Base `  M )
)
132submss 12727 . . . . 5  |-  ( X  e.  (SubMnd `  M
)  ->  X  C_  ( Base `  M ) )
1413adantl 277 . . . 4  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  X  C_  ( Base `  M ) )
158subm0cl 12729 . . . . 5  |-  ( X  e.  (SubMnd `  M
)  ->  ( 0g `  M )  e.  X
)
1615adantl 277 . . . 4  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( 0g `  M )  e.  X
)
17 fnfvima 5742 . . . 4  |-  ( ( F  Fn  ( Base `  M )  /\  X  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  X
)  ->  ( F `  ( 0g `  M
) )  e.  ( F " X ) )
1812, 14, 16, 17syl3anc 1238 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( F `  ( 0g `  M
) )  e.  ( F " X ) )
1911, 18eqeltrrd 2253 . 2  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( 0g `  N )  e.  ( F " X ) )
20 simpll 527 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  F  e.  ( M MndHom  N ) )
2114adantr 276 . . . . . . . . . 10  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  X  C_  ( Base `  M ) )
22 simprl 529 . . . . . . . . . 10  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  z  e.  X )
2321, 22sseldd 3154 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  z  e.  ( Base `  M )
)
24 simprr 531 . . . . . . . . . 10  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  x  e.  X )
2521, 24sseldd 3154 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  x  e.  ( Base `  M )
)
26 eqid 2175 . . . . . . . . . 10  |-  ( +g  `  M )  =  ( +g  `  M )
27 eqid 2175 . . . . . . . . . 10  |-  ( +g  `  N )  =  ( +g  `  N )
282, 26, 27mhmlin 12719 . . . . . . . . 9  |-  ( ( F  e.  ( M MndHom  N )  /\  z  e.  ( Base `  M
)  /\  x  e.  ( Base `  M )
)  ->  ( F `  ( z ( +g  `  M ) x ) )  =  ( ( F `  z ) ( +g  `  N
) ( F `  x ) ) )
2920, 23, 25, 28syl3anc 1238 . . . . . . . 8  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( F `  ( z ( +g  `  M ) x ) )  =  ( ( F `  z ) ( +g  `  N
) ( F `  x ) ) )
3012adantr 276 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  F  Fn  ( Base `  M )
)
3126submcl 12730 . . . . . . . . . . 11  |-  ( ( X  e.  (SubMnd `  M )  /\  z  e.  X  /\  x  e.  X )  ->  (
z ( +g  `  M
) x )  e.  X )
32313expb 1204 . . . . . . . . . 10  |-  ( ( X  e.  (SubMnd `  M )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( z
( +g  `  M ) x )  e.  X
)
3332adantll 476 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( z
( +g  `  M ) x )  e.  X
)
34 fnfvima 5742 . . . . . . . . 9  |-  ( ( F  Fn  ( Base `  M )  /\  X  C_  ( Base `  M
)  /\  ( z
( +g  `  M ) x )  e.  X
)  ->  ( F `  ( z ( +g  `  M ) x ) )  e.  ( F
" X ) )
3530, 21, 33, 34syl3anc 1238 . . . . . . . 8  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( F `  ( z ( +g  `  M ) x ) )  e.  ( F
" X ) )
3629, 35eqeltrrd 2253 . . . . . . 7  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) )
3736anassrs 400 . . . . . 6  |-  ( ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M ) )  /\  z  e.  X )  /\  x  e.  X
)  ->  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) )
3837ralrimiva 2548 . . . . 5  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  z  e.  X )  ->  A. x  e.  X  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) )
39 oveq2 5873 . . . . . . . . 9  |-  ( y  =  ( F `  x )  ->  (
( F `  z
) ( +g  `  N
) y )  =  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) ) )
4039eleq1d 2244 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
( ( F `  z ) ( +g  `  N ) y )  e.  ( F " X )  <->  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) ) )
4140ralima 5747 . . . . . . 7  |-  ( ( F  Fn  ( Base `  M )  /\  X  C_  ( Base `  M
) )  ->  ( A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
)  <->  A. x  e.  X  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) )  e.  ( F " X ) ) )
4212, 14, 41syl2anc 411 . . . . . 6  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( A. y  e.  ( F " X ) ( ( F `  z ) ( +g  `  N
) y )  e.  ( F " X
)  <->  A. x  e.  X  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) )  e.  ( F " X ) ) )
4342adantr 276 . . . . 5  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  z  e.  X )  ->  ( A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
)  <->  A. x  e.  X  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) )  e.  ( F " X ) ) )
4438, 43mpbird 167 . . . 4  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  z  e.  X )  ->  A. y  e.  ( F " X
) ( ( F `
 z ) ( +g  `  N ) y )  e.  ( F " X ) )
4544ralrimiva 2548 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  A. z  e.  X  A. y  e.  ( F " X
) ( ( F `
 z ) ( +g  `  N ) y )  e.  ( F " X ) )
46 oveq1 5872 . . . . . . 7  |-  ( x  =  ( F `  z )  ->  (
x ( +g  `  N
) y )  =  ( ( F `  z ) ( +g  `  N ) y ) )
4746eleq1d 2244 . . . . . 6  |-  ( x  =  ( F `  z )  ->  (
( x ( +g  `  N ) y )  e.  ( F " X )  <->  ( ( F `  z )
( +g  `  N ) y )  e.  ( F " X ) ) )
4847ralbidv 2475 . . . . 5  |-  ( x  =  ( F `  z )  ->  ( A. y  e.  ( F " X ) ( x ( +g  `  N
) y )  e.  ( F " X
)  <->  A. y  e.  ( F " X ) ( ( F `  z ) ( +g  `  N ) y )  e.  ( F " X ) ) )
4948ralima 5747 . . . 4  |-  ( ( F  Fn  ( Base `  M )  /\  X  C_  ( Base `  M
) )  ->  ( A. x  e.  ( F " X ) A. y  e.  ( F " X ) ( x ( +g  `  N
) y )  e.  ( F " X
)  <->  A. z  e.  X  A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
) ) )
5012, 14, 49syl2anc 411 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( A. x  e.  ( F " X ) A. y  e.  ( F " X
) ( x ( +g  `  N ) y )  e.  ( F " X )  <->  A. z  e.  X  A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
) ) )
5145, 50mpbird 167 . 2  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  A. x  e.  ( F " X
) A. y  e.  ( F " X
) ( x ( +g  `  N ) y )  e.  ( F " X ) )
52 mhmrcl2 12716 . . . 4  |-  ( F  e.  ( M MndHom  N
)  ->  N  e.  Mnd )
5352adantr 276 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  N  e.  Mnd )
543, 9, 27issubm 12724 . . 3  |-  ( N  e.  Mnd  ->  (
( F " X
)  e.  (SubMnd `  N )  <->  ( ( F " X )  C_  ( Base `  N )  /\  ( 0g `  N
)  e.  ( F
" X )  /\  A. x  e.  ( F
" X ) A. y  e.  ( F " X ) ( x ( +g  `  N
) y )  e.  ( F " X
) ) ) )
5553, 54syl 14 . 2  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( ( F " X )  e.  (SubMnd `  N )  <->  ( ( F " X
)  C_  ( Base `  N )  /\  ( 0g `  N )  e.  ( F " X
)  /\  A. x  e.  ( F " X
) A. y  e.  ( F " X
) ( x ( +g  `  N ) y )  e.  ( F " X ) ) ) )
567, 19, 51, 55mpbir3and 1180 1  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( F " X )  e.  (SubMnd `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2146   A.wral 2453    C_ wss 3127   ran crn 4621   "cima 4623    Fn wfn 5203   -->wf 5204   ` cfv 5208  (class class class)co 5865   Basecbs 12427   +g cplusg 12491   0gc0g 12625   Mndcmnd 12681   MndHom cmhm 12710  SubMndcsubmnd 12711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-map 6640  df-inn 8891  df-ndx 12430  df-slot 12431  df-base 12433  df-mhm 12712  df-submnd 12713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator