ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmima Unicode version

Theorem mhmima 12958
Description: The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
mhmima  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( F " X )  e.  (SubMnd `  N ) )

Proof of Theorem mhmima
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 4999 . . 3  |-  ( F
" X )  C_  ran  F
2 eqid 2189 . . . . . 6  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2189 . . . . . 6  |-  ( Base `  N )  =  (
Base `  N )
42, 3mhmf 12932 . . . . 5  |-  ( F  e.  ( M MndHom  N
)  ->  F :
( Base `  M ) --> ( Base `  N )
)
54adantr 276 . . . 4  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  F :
( Base `  M ) --> ( Base `  N )
)
65frnd 5394 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ran  F  C_  ( Base `  N )
)
71, 6sstrid 3181 . 2  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( F " X )  C_  ( Base `  N ) )
8 eqid 2189 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
9 eqid 2189 . . . . 5  |-  ( 0g
`  N )  =  ( 0g `  N
)
108, 9mhm0 12935 . . . 4  |-  ( F  e.  ( M MndHom  N
)  ->  ( F `  ( 0g `  M
) )  =  ( 0g `  N ) )
1110adantr 276 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( F `  ( 0g `  M
) )  =  ( 0g `  N ) )
125ffnd 5385 . . . 4  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  F  Fn  ( Base `  M )
)
132submss 12943 . . . . 5  |-  ( X  e.  (SubMnd `  M
)  ->  X  C_  ( Base `  M ) )
1413adantl 277 . . . 4  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  X  C_  ( Base `  M ) )
158subm0cl 12945 . . . . 5  |-  ( X  e.  (SubMnd `  M
)  ->  ( 0g `  M )  e.  X
)
1615adantl 277 . . . 4  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( 0g `  M )  e.  X
)
17 fnfvima 5772 . . . 4  |-  ( ( F  Fn  ( Base `  M )  /\  X  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  X
)  ->  ( F `  ( 0g `  M
) )  e.  ( F " X ) )
1812, 14, 16, 17syl3anc 1249 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( F `  ( 0g `  M
) )  e.  ( F " X ) )
1911, 18eqeltrrd 2267 . 2  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( 0g `  N )  e.  ( F " X ) )
20 simpll 527 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  F  e.  ( M MndHom  N ) )
2114adantr 276 . . . . . . . . . 10  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  X  C_  ( Base `  M ) )
22 simprl 529 . . . . . . . . . 10  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  z  e.  X )
2321, 22sseldd 3171 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  z  e.  ( Base `  M )
)
24 simprr 531 . . . . . . . . . 10  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  x  e.  X )
2521, 24sseldd 3171 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  x  e.  ( Base `  M )
)
26 eqid 2189 . . . . . . . . . 10  |-  ( +g  `  M )  =  ( +g  `  M )
27 eqid 2189 . . . . . . . . . 10  |-  ( +g  `  N )  =  ( +g  `  N )
282, 26, 27mhmlin 12934 . . . . . . . . 9  |-  ( ( F  e.  ( M MndHom  N )  /\  z  e.  ( Base `  M
)  /\  x  e.  ( Base `  M )
)  ->  ( F `  ( z ( +g  `  M ) x ) )  =  ( ( F `  z ) ( +g  `  N
) ( F `  x ) ) )
2920, 23, 25, 28syl3anc 1249 . . . . . . . 8  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( F `  ( z ( +g  `  M ) x ) )  =  ( ( F `  z ) ( +g  `  N
) ( F `  x ) ) )
3012adantr 276 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  F  Fn  ( Base `  M )
)
3126submcl 12946 . . . . . . . . . . 11  |-  ( ( X  e.  (SubMnd `  M )  /\  z  e.  X  /\  x  e.  X )  ->  (
z ( +g  `  M
) x )  e.  X )
32313expb 1206 . . . . . . . . . 10  |-  ( ( X  e.  (SubMnd `  M )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( z
( +g  `  M ) x )  e.  X
)
3332adantll 476 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( z
( +g  `  M ) x )  e.  X
)
34 fnfvima 5772 . . . . . . . . 9  |-  ( ( F  Fn  ( Base `  M )  /\  X  C_  ( Base `  M
)  /\  ( z
( +g  `  M ) x )  e.  X
)  ->  ( F `  ( z ( +g  `  M ) x ) )  e.  ( F
" X ) )
3530, 21, 33, 34syl3anc 1249 . . . . . . . 8  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( F `  ( z ( +g  `  M ) x ) )  e.  ( F
" X ) )
3629, 35eqeltrrd 2267 . . . . . . 7  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) )
3736anassrs 400 . . . . . 6  |-  ( ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M ) )  /\  z  e.  X )  /\  x  e.  X
)  ->  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) )
3837ralrimiva 2563 . . . . 5  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  z  e.  X )  ->  A. x  e.  X  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) )
39 oveq2 5905 . . . . . . . . 9  |-  ( y  =  ( F `  x )  ->  (
( F `  z
) ( +g  `  N
) y )  =  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) ) )
4039eleq1d 2258 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
( ( F `  z ) ( +g  `  N ) y )  e.  ( F " X )  <->  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) ) )
4140ralima 5777 . . . . . . 7  |-  ( ( F  Fn  ( Base `  M )  /\  X  C_  ( Base `  M
) )  ->  ( A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
)  <->  A. x  e.  X  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) )  e.  ( F " X ) ) )
4212, 14, 41syl2anc 411 . . . . . 6  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( A. y  e.  ( F " X ) ( ( F `  z ) ( +g  `  N
) y )  e.  ( F " X
)  <->  A. x  e.  X  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) )  e.  ( F " X ) ) )
4342adantr 276 . . . . 5  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  z  e.  X )  ->  ( A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
)  <->  A. x  e.  X  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) )  e.  ( F " X ) ) )
4438, 43mpbird 167 . . . 4  |-  ( ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M
) )  /\  z  e.  X )  ->  A. y  e.  ( F " X
) ( ( F `
 z ) ( +g  `  N ) y )  e.  ( F " X ) )
4544ralrimiva 2563 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  A. z  e.  X  A. y  e.  ( F " X
) ( ( F `
 z ) ( +g  `  N ) y )  e.  ( F " X ) )
46 oveq1 5904 . . . . . . 7  |-  ( x  =  ( F `  z )  ->  (
x ( +g  `  N
) y )  =  ( ( F `  z ) ( +g  `  N ) y ) )
4746eleq1d 2258 . . . . . 6  |-  ( x  =  ( F `  z )  ->  (
( x ( +g  `  N ) y )  e.  ( F " X )  <->  ( ( F `  z )
( +g  `  N ) y )  e.  ( F " X ) ) )
4847ralbidv 2490 . . . . 5  |-  ( x  =  ( F `  z )  ->  ( A. y  e.  ( F " X ) ( x ( +g  `  N
) y )  e.  ( F " X
)  <->  A. y  e.  ( F " X ) ( ( F `  z ) ( +g  `  N ) y )  e.  ( F " X ) ) )
4948ralima 5777 . . . 4  |-  ( ( F  Fn  ( Base `  M )  /\  X  C_  ( Base `  M
) )  ->  ( A. x  e.  ( F " X ) A. y  e.  ( F " X ) ( x ( +g  `  N
) y )  e.  ( F " X
)  <->  A. z  e.  X  A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
) ) )
5012, 14, 49syl2anc 411 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( A. x  e.  ( F " X ) A. y  e.  ( F " X
) ( x ( +g  `  N ) y )  e.  ( F " X )  <->  A. z  e.  X  A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
) ) )
5145, 50mpbird 167 . 2  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  A. x  e.  ( F " X
) A. y  e.  ( F " X
) ( x ( +g  `  N ) y )  e.  ( F " X ) )
52 mhmrcl2 12931 . . . 4  |-  ( F  e.  ( M MndHom  N
)  ->  N  e.  Mnd )
5352adantr 276 . . 3  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  N  e.  Mnd )
543, 9, 27issubm 12939 . . 3  |-  ( N  e.  Mnd  ->  (
( F " X
)  e.  (SubMnd `  N )  <->  ( ( F " X )  C_  ( Base `  N )  /\  ( 0g `  N
)  e.  ( F
" X )  /\  A. x  e.  ( F
" X ) A. y  e.  ( F " X ) ( x ( +g  `  N
) y )  e.  ( F " X
) ) ) )
5553, 54syl 14 . 2  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( ( F " X )  e.  (SubMnd `  N )  <->  ( ( F " X
)  C_  ( Base `  N )  /\  ( 0g `  N )  e.  ( F " X
)  /\  A. x  e.  ( F " X
) A. y  e.  ( F " X
) ( x ( +g  `  N ) y )  e.  ( F " X ) ) ) )
567, 19, 51, 55mpbir3and 1182 1  |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M )
)  ->  ( F " X )  e.  (SubMnd `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468    C_ wss 3144   ran crn 4645   "cima 4647    Fn wfn 5230   -->wf 5231   ` cfv 5235  (class class class)co 5897   Basecbs 12515   +g cplusg 12592   0gc0g 12764   Mndcmnd 12892   MndHom cmhm 12924  SubMndcsubmnd 12925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-map 6677  df-inn 8951  df-ndx 12518  df-slot 12519  df-base 12521  df-mhm 12926  df-submnd 12927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator