Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnptoprest2 | Unicode version |
Description: Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 6-Apr-2023.) |
Ref | Expression |
---|---|
cnprest.1 | |
cnprest.2 |
Ref | Expression |
---|---|
cnptoprest2 | ↾t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnprest.1 | . . . . . . . 8 | |
2 | 1 | toptopon 12656 | . . . . . . 7 TopOn |
3 | 2 | biimpi 119 | . . . . . 6 TopOn |
4 | 3 | ad2antrr 480 | . . . . 5 TopOn |
5 | 4 | adantr 274 | . . . 4 TopOn |
6 | simplr 520 | . . . . 5 | |
7 | 6 | adantr 274 | . . . 4 |
8 | simpr 109 | . . . 4 | |
9 | cnprcl2k 12846 | . . . 4 TopOn | |
10 | 5, 7, 8, 9 | syl3anc 1228 | . . 3 |
11 | 10 | ex 114 | . 2 |
12 | 4 | adantr 274 | . . . 4 ↾t TopOn |
13 | cnprest.2 | . . . . . . . . 9 | |
14 | uniexg 4417 | . . . . . . . . 9 | |
15 | 13, 14 | eqeltrid 2253 | . . . . . . . 8 |
16 | 6, 15 | syl 14 | . . . . . . 7 |
17 | simprr 522 | . . . . . . 7 | |
18 | 16, 17 | ssexd 4122 | . . . . . 6 |
19 | resttop 12810 | . . . . . 6 ↾t | |
20 | 6, 18, 19 | syl2anc 409 | . . . . 5 ↾t |
21 | 20 | adantr 274 | . . . 4 ↾t ↾t |
22 | simpr 109 | . . . 4 ↾t ↾t | |
23 | cnprcl2k 12846 | . . . 4 TopOn ↾t ↾t | |
24 | 12, 21, 22, 23 | syl3anc 1228 | . . 3 ↾t |
25 | 24 | ex 114 | . 2 ↾t |
26 | simprl 521 | . . . . . . . . . 10 | |
27 | 26 | ffvelrnda 5620 | . . . . . . . . 9 |
28 | 27 | biantrud 302 | . . . . . . . 8 |
29 | elin 3305 | . . . . . . . 8 | |
30 | 28, 29 | bitr4di 197 | . . . . . . 7 |
31 | imassrn 4957 | . . . . . . . . . . . 12 | |
32 | simplrl 525 | . . . . . . . . . . . . 13 | |
33 | 32 | frnd 5347 | . . . . . . . . . . . 12 |
34 | 31, 33 | sstrid 3153 | . . . . . . . . . . 11 |
35 | 34 | biantrud 302 | . . . . . . . . . 10 |
36 | ssin 3344 | . . . . . . . . . 10 | |
37 | 35, 36 | bitrdi 195 | . . . . . . . . 9 |
38 | 37 | anbi2d 460 | . . . . . . . 8 |
39 | 38 | rexbidv 2467 | . . . . . . 7 |
40 | 30, 39 | imbi12d 233 | . . . . . 6 |
41 | 40 | ralbidv 2466 | . . . . 5 |
42 | vex 2729 | . . . . . . . 8 | |
43 | 42 | inex1 4116 | . . . . . . 7 |
44 | 43 | a1i 9 | . . . . . 6 |
45 | 6 | adantr 274 | . . . . . . 7 |
46 | 18 | adantr 274 | . . . . . . 7 |
47 | elrest 12563 | . . . . . . 7 ↾t | |
48 | 45, 46, 47 | syl2anc 409 | . . . . . 6 ↾t |
49 | eleq2 2230 | . . . . . . . 8 | |
50 | sseq2 3166 | . . . . . . . . . 10 | |
51 | 50 | anbi2d 460 | . . . . . . . . 9 |
52 | 51 | rexbidv 2467 | . . . . . . . 8 |
53 | 49, 52 | imbi12d 233 | . . . . . . 7 |
54 | 53 | adantl 275 | . . . . . 6 |
55 | 44, 48, 54 | ralxfr2d 4442 | . . . . 5 ↾t |
56 | 41, 55 | bitr4d 190 | . . . 4 ↾t |
57 | 4 | adantr 274 | . . . . . 6 TopOn |
58 | 13 | toptopon 12656 | . . . . . . 7 TopOn |
59 | 45, 58 | sylib 121 | . . . . . 6 TopOn |
60 | simpr 109 | . . . . . 6 | |
61 | iscnp 12839 | . . . . . 6 TopOn TopOn | |
62 | 57, 59, 60, 61 | syl3anc 1228 | . . . . 5 |
63 | 17 | adantr 274 | . . . . . . 7 |
64 | 32, 63 | fssd 5350 | . . . . . 6 |
65 | 64 | biantrurd 303 | . . . . 5 |
66 | 62, 65 | bitr4d 190 | . . . 4 |
67 | resttopon 12811 | . . . . . . 7 TopOn ↾t TopOn | |
68 | 59, 63, 67 | syl2anc 409 | . . . . . 6 ↾t TopOn |
69 | iscnp 12839 | . . . . . 6 TopOn ↾t TopOn ↾t ↾t | |
70 | 57, 68, 60, 69 | syl3anc 1228 | . . . . 5 ↾t ↾t |
71 | 26 | biantrurd 303 | . . . . . 6 ↾t ↾t |
72 | 71 | adantr 274 | . . . . 5 ↾t ↾t |
73 | 70, 72 | bitr4d 190 | . . . 4 ↾t ↾t |
74 | 56, 66, 73 | 3bitr4d 219 | . . 3 ↾t |
75 | 74 | ex 114 | . 2 ↾t |
76 | 11, 25, 75 | pm5.21ndd 695 | 1 ↾t |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wrex 2445 cvv 2726 cin 3115 wss 3116 cuni 3789 crn 4605 cima 4607 wf 5184 cfv 5188 (class class class)co 5842 ↾t crest 12556 ctop 12635 TopOnctopon 12648 ccnp 12826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-rest 12558 df-topgen 12577 df-top 12636 df-topon 12649 df-bases 12681 df-cnp 12829 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |