| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnptoprest2 | Unicode version | ||
| Description: Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 6-Apr-2023.) |
| Ref | Expression |
|---|---|
| cnprest.1 |
|
| cnprest.2 |
|
| Ref | Expression |
|---|---|
| cnptoprest2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnprest.1 |
. . . . . . . 8
| |
| 2 | 1 | toptopon 14605 |
. . . . . . 7
|
| 3 | 2 | biimpi 120 |
. . . . . 6
|
| 4 | 3 | ad2antrr 488 |
. . . . 5
|
| 5 | 4 | adantr 276 |
. . . 4
|
| 6 | simplr 528 |
. . . . 5
| |
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | simpr 110 |
. . . 4
| |
| 9 | cnprcl2k 14793 |
. . . 4
| |
| 10 | 5, 7, 8, 9 | syl3anc 1250 |
. . 3
|
| 11 | 10 | ex 115 |
. 2
|
| 12 | 4 | adantr 276 |
. . . 4
|
| 13 | cnprest.2 |
. . . . . . . . 9
| |
| 14 | uniexg 4504 |
. . . . . . . . 9
| |
| 15 | 13, 14 | eqeltrid 2294 |
. . . . . . . 8
|
| 16 | 6, 15 | syl 14 |
. . . . . . 7
|
| 17 | simprr 531 |
. . . . . . 7
| |
| 18 | 16, 17 | ssexd 4200 |
. . . . . 6
|
| 19 | resttop 14757 |
. . . . . 6
| |
| 20 | 6, 18, 19 | syl2anc 411 |
. . . . 5
|
| 21 | 20 | adantr 276 |
. . . 4
|
| 22 | simpr 110 |
. . . 4
| |
| 23 | cnprcl2k 14793 |
. . . 4
| |
| 24 | 12, 21, 22, 23 | syl3anc 1250 |
. . 3
|
| 25 | 24 | ex 115 |
. 2
|
| 26 | simprl 529 |
. . . . . . . . . 10
| |
| 27 | 26 | ffvelcdmda 5738 |
. . . . . . . . 9
|
| 28 | 27 | biantrud 304 |
. . . . . . . 8
|
| 29 | elin 3364 |
. . . . . . . 8
| |
| 30 | 28, 29 | bitr4di 198 |
. . . . . . 7
|
| 31 | imassrn 5052 |
. . . . . . . . . . . 12
| |
| 32 | simplrl 535 |
. . . . . . . . . . . . 13
| |
| 33 | 32 | frnd 5455 |
. . . . . . . . . . . 12
|
| 34 | 31, 33 | sstrid 3212 |
. . . . . . . . . . 11
|
| 35 | 34 | biantrud 304 |
. . . . . . . . . 10
|
| 36 | ssin 3403 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | bitrdi 196 |
. . . . . . . . 9
|
| 38 | 37 | anbi2d 464 |
. . . . . . . 8
|
| 39 | 38 | rexbidv 2509 |
. . . . . . 7
|
| 40 | 30, 39 | imbi12d 234 |
. . . . . 6
|
| 41 | 40 | ralbidv 2508 |
. . . . 5
|
| 42 | vex 2779 |
. . . . . . . 8
| |
| 43 | 42 | inex1 4194 |
. . . . . . 7
|
| 44 | 43 | a1i 9 |
. . . . . 6
|
| 45 | 6 | adantr 276 |
. . . . . . 7
|
| 46 | 18 | adantr 276 |
. . . . . . 7
|
| 47 | elrest 13193 |
. . . . . . 7
| |
| 48 | 45, 46, 47 | syl2anc 411 |
. . . . . 6
|
| 49 | eleq2 2271 |
. . . . . . . 8
| |
| 50 | sseq2 3225 |
. . . . . . . . . 10
| |
| 51 | 50 | anbi2d 464 |
. . . . . . . . 9
|
| 52 | 51 | rexbidv 2509 |
. . . . . . . 8
|
| 53 | 49, 52 | imbi12d 234 |
. . . . . . 7
|
| 54 | 53 | adantl 277 |
. . . . . 6
|
| 55 | 44, 48, 54 | ralxfr2d 4529 |
. . . . 5
|
| 56 | 41, 55 | bitr4d 191 |
. . . 4
|
| 57 | 4 | adantr 276 |
. . . . . 6
|
| 58 | 13 | toptopon 14605 |
. . . . . . 7
|
| 59 | 45, 58 | sylib 122 |
. . . . . 6
|
| 60 | simpr 110 |
. . . . . 6
| |
| 61 | iscnp 14786 |
. . . . . 6
| |
| 62 | 57, 59, 60, 61 | syl3anc 1250 |
. . . . 5
|
| 63 | 17 | adantr 276 |
. . . . . . 7
|
| 64 | 32, 63 | fssd 5458 |
. . . . . 6
|
| 65 | 64 | biantrurd 305 |
. . . . 5
|
| 66 | 62, 65 | bitr4d 191 |
. . . 4
|
| 67 | resttopon 14758 |
. . . . . . 7
| |
| 68 | 59, 63, 67 | syl2anc 411 |
. . . . . 6
|
| 69 | iscnp 14786 |
. . . . . 6
| |
| 70 | 57, 68, 60, 69 | syl3anc 1250 |
. . . . 5
|
| 71 | 26 | biantrurd 305 |
. . . . . 6
|
| 72 | 71 | adantr 276 |
. . . . 5
|
| 73 | 70, 72 | bitr4d 191 |
. . . 4
|
| 74 | 56, 66, 73 | 3bitr4d 220 |
. . 3
|
| 75 | 74 | ex 115 |
. 2
|
| 76 | 11, 25, 75 | pm5.21ndd 707 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-rest 13188 df-topgen 13207 df-top 14585 df-topon 14598 df-bases 14630 df-cnp 14776 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |