Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnptoprest2 | Unicode version |
Description: Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 6-Apr-2023.) |
Ref | Expression |
---|---|
cnprest.1 | |
cnprest.2 |
Ref | Expression |
---|---|
cnptoprest2 | ↾t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnprest.1 | . . . . . . . 8 | |
2 | 1 | toptopon 12810 | . . . . . . 7 TopOn |
3 | 2 | biimpi 119 | . . . . . 6 TopOn |
4 | 3 | ad2antrr 485 | . . . . 5 TopOn |
5 | 4 | adantr 274 | . . . 4 TopOn |
6 | simplr 525 | . . . . 5 | |
7 | 6 | adantr 274 | . . . 4 |
8 | simpr 109 | . . . 4 | |
9 | cnprcl2k 13000 | . . . 4 TopOn | |
10 | 5, 7, 8, 9 | syl3anc 1233 | . . 3 |
11 | 10 | ex 114 | . 2 |
12 | 4 | adantr 274 | . . . 4 ↾t TopOn |
13 | cnprest.2 | . . . . . . . . 9 | |
14 | uniexg 4424 | . . . . . . . . 9 | |
15 | 13, 14 | eqeltrid 2257 | . . . . . . . 8 |
16 | 6, 15 | syl 14 | . . . . . . 7 |
17 | simprr 527 | . . . . . . 7 | |
18 | 16, 17 | ssexd 4129 | . . . . . 6 |
19 | resttop 12964 | . . . . . 6 ↾t | |
20 | 6, 18, 19 | syl2anc 409 | . . . . 5 ↾t |
21 | 20 | adantr 274 | . . . 4 ↾t ↾t |
22 | simpr 109 | . . . 4 ↾t ↾t | |
23 | cnprcl2k 13000 | . . . 4 TopOn ↾t ↾t | |
24 | 12, 21, 22, 23 | syl3anc 1233 | . . 3 ↾t |
25 | 24 | ex 114 | . 2 ↾t |
26 | simprl 526 | . . . . . . . . . 10 | |
27 | 26 | ffvelrnda 5631 | . . . . . . . . 9 |
28 | 27 | biantrud 302 | . . . . . . . 8 |
29 | elin 3310 | . . . . . . . 8 | |
30 | 28, 29 | bitr4di 197 | . . . . . . 7 |
31 | imassrn 4964 | . . . . . . . . . . . 12 | |
32 | simplrl 530 | . . . . . . . . . . . . 13 | |
33 | 32 | frnd 5357 | . . . . . . . . . . . 12 |
34 | 31, 33 | sstrid 3158 | . . . . . . . . . . 11 |
35 | 34 | biantrud 302 | . . . . . . . . . 10 |
36 | ssin 3349 | . . . . . . . . . 10 | |
37 | 35, 36 | bitrdi 195 | . . . . . . . . 9 |
38 | 37 | anbi2d 461 | . . . . . . . 8 |
39 | 38 | rexbidv 2471 | . . . . . . 7 |
40 | 30, 39 | imbi12d 233 | . . . . . 6 |
41 | 40 | ralbidv 2470 | . . . . 5 |
42 | vex 2733 | . . . . . . . 8 | |
43 | 42 | inex1 4123 | . . . . . . 7 |
44 | 43 | a1i 9 | . . . . . 6 |
45 | 6 | adantr 274 | . . . . . . 7 |
46 | 18 | adantr 274 | . . . . . . 7 |
47 | elrest 12586 | . . . . . . 7 ↾t | |
48 | 45, 46, 47 | syl2anc 409 | . . . . . 6 ↾t |
49 | eleq2 2234 | . . . . . . . 8 | |
50 | sseq2 3171 | . . . . . . . . . 10 | |
51 | 50 | anbi2d 461 | . . . . . . . . 9 |
52 | 51 | rexbidv 2471 | . . . . . . . 8 |
53 | 49, 52 | imbi12d 233 | . . . . . . 7 |
54 | 53 | adantl 275 | . . . . . 6 |
55 | 44, 48, 54 | ralxfr2d 4449 | . . . . 5 ↾t |
56 | 41, 55 | bitr4d 190 | . . . 4 ↾t |
57 | 4 | adantr 274 | . . . . . 6 TopOn |
58 | 13 | toptopon 12810 | . . . . . . 7 TopOn |
59 | 45, 58 | sylib 121 | . . . . . 6 TopOn |
60 | simpr 109 | . . . . . 6 | |
61 | iscnp 12993 | . . . . . 6 TopOn TopOn | |
62 | 57, 59, 60, 61 | syl3anc 1233 | . . . . 5 |
63 | 17 | adantr 274 | . . . . . . 7 |
64 | 32, 63 | fssd 5360 | . . . . . 6 |
65 | 64 | biantrurd 303 | . . . . 5 |
66 | 62, 65 | bitr4d 190 | . . . 4 |
67 | resttopon 12965 | . . . . . . 7 TopOn ↾t TopOn | |
68 | 59, 63, 67 | syl2anc 409 | . . . . . 6 ↾t TopOn |
69 | iscnp 12993 | . . . . . 6 TopOn ↾t TopOn ↾t ↾t | |
70 | 57, 68, 60, 69 | syl3anc 1233 | . . . . 5 ↾t ↾t |
71 | 26 | biantrurd 303 | . . . . . 6 ↾t ↾t |
72 | 71 | adantr 274 | . . . . 5 ↾t ↾t |
73 | 70, 72 | bitr4d 190 | . . . 4 ↾t ↾t |
74 | 56, 66, 73 | 3bitr4d 219 | . . 3 ↾t |
75 | 74 | ex 114 | . 2 ↾t |
76 | 11, 25, 75 | pm5.21ndd 700 | 1 ↾t |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 cvv 2730 cin 3120 wss 3121 cuni 3796 crn 4612 cima 4614 wf 5194 cfv 5198 (class class class)co 5853 ↾t crest 12579 ctop 12789 TopOnctopon 12802 ccnp 12980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-rest 12581 df-topgen 12600 df-top 12790 df-topon 12803 df-bases 12835 df-cnp 12983 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |