| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnptoprest2 | Unicode version | ||
| Description: Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 6-Apr-2023.) |
| Ref | Expression |
|---|---|
| cnprest.1 |
|
| cnprest.2 |
|
| Ref | Expression |
|---|---|
| cnptoprest2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnprest.1 |
. . . . . . . 8
| |
| 2 | 1 | toptopon 14523 |
. . . . . . 7
|
| 3 | 2 | biimpi 120 |
. . . . . 6
|
| 4 | 3 | ad2antrr 488 |
. . . . 5
|
| 5 | 4 | adantr 276 |
. . . 4
|
| 6 | simplr 528 |
. . . . 5
| |
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | simpr 110 |
. . . 4
| |
| 9 | cnprcl2k 14711 |
. . . 4
| |
| 10 | 5, 7, 8, 9 | syl3anc 1250 |
. . 3
|
| 11 | 10 | ex 115 |
. 2
|
| 12 | 4 | adantr 276 |
. . . 4
|
| 13 | cnprest.2 |
. . . . . . . . 9
| |
| 14 | uniexg 4487 |
. . . . . . . . 9
| |
| 15 | 13, 14 | eqeltrid 2292 |
. . . . . . . 8
|
| 16 | 6, 15 | syl 14 |
. . . . . . 7
|
| 17 | simprr 531 |
. . . . . . 7
| |
| 18 | 16, 17 | ssexd 4185 |
. . . . . 6
|
| 19 | resttop 14675 |
. . . . . 6
| |
| 20 | 6, 18, 19 | syl2anc 411 |
. . . . 5
|
| 21 | 20 | adantr 276 |
. . . 4
|
| 22 | simpr 110 |
. . . 4
| |
| 23 | cnprcl2k 14711 |
. . . 4
| |
| 24 | 12, 21, 22, 23 | syl3anc 1250 |
. . 3
|
| 25 | 24 | ex 115 |
. 2
|
| 26 | simprl 529 |
. . . . . . . . . 10
| |
| 27 | 26 | ffvelcdmda 5717 |
. . . . . . . . 9
|
| 28 | 27 | biantrud 304 |
. . . . . . . 8
|
| 29 | elin 3356 |
. . . . . . . 8
| |
| 30 | 28, 29 | bitr4di 198 |
. . . . . . 7
|
| 31 | imassrn 5034 |
. . . . . . . . . . . 12
| |
| 32 | simplrl 535 |
. . . . . . . . . . . . 13
| |
| 33 | 32 | frnd 5437 |
. . . . . . . . . . . 12
|
| 34 | 31, 33 | sstrid 3204 |
. . . . . . . . . . 11
|
| 35 | 34 | biantrud 304 |
. . . . . . . . . 10
|
| 36 | ssin 3395 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | bitrdi 196 |
. . . . . . . . 9
|
| 38 | 37 | anbi2d 464 |
. . . . . . . 8
|
| 39 | 38 | rexbidv 2507 |
. . . . . . 7
|
| 40 | 30, 39 | imbi12d 234 |
. . . . . 6
|
| 41 | 40 | ralbidv 2506 |
. . . . 5
|
| 42 | vex 2775 |
. . . . . . . 8
| |
| 43 | 42 | inex1 4179 |
. . . . . . 7
|
| 44 | 43 | a1i 9 |
. . . . . 6
|
| 45 | 6 | adantr 276 |
. . . . . . 7
|
| 46 | 18 | adantr 276 |
. . . . . . 7
|
| 47 | elrest 13111 |
. . . . . . 7
| |
| 48 | 45, 46, 47 | syl2anc 411 |
. . . . . 6
|
| 49 | eleq2 2269 |
. . . . . . . 8
| |
| 50 | sseq2 3217 |
. . . . . . . . . 10
| |
| 51 | 50 | anbi2d 464 |
. . . . . . . . 9
|
| 52 | 51 | rexbidv 2507 |
. . . . . . . 8
|
| 53 | 49, 52 | imbi12d 234 |
. . . . . . 7
|
| 54 | 53 | adantl 277 |
. . . . . 6
|
| 55 | 44, 48, 54 | ralxfr2d 4512 |
. . . . 5
|
| 56 | 41, 55 | bitr4d 191 |
. . . 4
|
| 57 | 4 | adantr 276 |
. . . . . 6
|
| 58 | 13 | toptopon 14523 |
. . . . . . 7
|
| 59 | 45, 58 | sylib 122 |
. . . . . 6
|
| 60 | simpr 110 |
. . . . . 6
| |
| 61 | iscnp 14704 |
. . . . . 6
| |
| 62 | 57, 59, 60, 61 | syl3anc 1250 |
. . . . 5
|
| 63 | 17 | adantr 276 |
. . . . . . 7
|
| 64 | 32, 63 | fssd 5440 |
. . . . . 6
|
| 65 | 64 | biantrurd 305 |
. . . . 5
|
| 66 | 62, 65 | bitr4d 191 |
. . . 4
|
| 67 | resttopon 14676 |
. . . . . . 7
| |
| 68 | 59, 63, 67 | syl2anc 411 |
. . . . . 6
|
| 69 | iscnp 14704 |
. . . . . 6
| |
| 70 | 57, 68, 60, 69 | syl3anc 1250 |
. . . . 5
|
| 71 | 26 | biantrurd 305 |
. . . . . 6
|
| 72 | 71 | adantr 276 |
. . . . 5
|
| 73 | 70, 72 | bitr4d 191 |
. . . 4
|
| 74 | 56, 66, 73 | 3bitr4d 220 |
. . 3
|
| 75 | 74 | ex 115 |
. 2
|
| 76 | 11, 25, 75 | pm5.21ndd 707 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-map 6739 df-rest 13106 df-topgen 13125 df-top 14503 df-topon 14516 df-bases 14548 df-cnp 14694 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |