ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnptoprest2 Unicode version

Theorem cnptoprest2 13743
Description: Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
Hypotheses
Ref Expression
cnprest.1  |-  X  = 
U. J
cnprest.2  |-  Y  = 
U. K
Assertion
Ref Expression
cnptoprest2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y
) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  F  e.  ( ( J  CnP  ( Kt  B ) ) `  P ) ) )

Proof of Theorem cnptoprest2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnprest.1 . . . . . . . 8  |-  X  = 
U. J
21toptopon 13521 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
32biimpi 120 . . . . . 6  |-  ( J  e.  Top  ->  J  e.  (TopOn `  X )
)
43ad2antrr 488 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y
) )  ->  J  e.  (TopOn `  X )
)
54adantr 276 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  F  e.  ( ( J  CnP  K
) `  P )
)  ->  J  e.  (TopOn `  X ) )
6 simplr 528 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y
) )  ->  K  e.  Top )
76adantr 276 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  F  e.  ( ( J  CnP  K
) `  P )
)  ->  K  e.  Top )
8 simpr 110 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  F  e.  ( ( J  CnP  K
) `  P )
)  ->  F  e.  ( ( J  CnP  K ) `  P ) )
9 cnprcl2k 13709 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )
105, 7, 8, 9syl3anc 1238 . . 3  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  F  e.  ( ( J  CnP  K
) `  P )
)  ->  P  e.  X )
1110ex 115 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y
) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  X ) )
124adantr 276 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  F  e.  ( ( J  CnP  ( Kt  B ) ) `  P ) )  ->  J  e.  (TopOn `  X
) )
13 cnprest.2 . . . . . . . . 9  |-  Y  = 
U. K
14 uniexg 4440 . . . . . . . . 9  |-  ( K  e.  Top  ->  U. K  e.  _V )
1513, 14eqeltrid 2264 . . . . . . . 8  |-  ( K  e.  Top  ->  Y  e.  _V )
166, 15syl 14 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y
) )  ->  Y  e.  _V )
17 simprr 531 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y
) )  ->  B  C_  Y )
1816, 17ssexd 4144 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y
) )  ->  B  e.  _V )
19 resttop 13673 . . . . . 6  |-  ( ( K  e.  Top  /\  B  e.  _V )  ->  ( Kt  B )  e.  Top )
206, 18, 19syl2anc 411 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y
) )  ->  ( Kt  B )  e.  Top )
2120adantr 276 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  F  e.  ( ( J  CnP  ( Kt  B ) ) `  P ) )  -> 
( Kt  B )  e.  Top )
22 simpr 110 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  F  e.  ( ( J  CnP  ( Kt  B ) ) `  P ) )  ->  F  e.  ( ( J  CnP  ( Kt  B ) ) `  P ) )
23 cnprcl2k 13709 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  ( Kt  B )  e.  Top  /\  F  e.  ( ( J  CnP  ( Kt  B ) ) `  P
) )  ->  P  e.  X )
2412, 21, 22, 23syl3anc 1238 . . 3  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  F  e.  ( ( J  CnP  ( Kt  B ) ) `  P ) )  ->  P  e.  X )
2524ex 115 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y
) )  ->  ( F  e.  ( ( J  CnP  ( Kt  B ) ) `  P )  ->  P  e.  X
) )
26 simprl 529 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y
) )  ->  F : X --> B )
2726ffvelcdmda 5652 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( F `  P )  e.  B
)
2827biantrud 304 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( ( F `  P )  e.  x  <->  ( ( F `
 P )  e.  x  /\  ( F `
 P )  e.  B ) ) )
29 elin 3319 . . . . . . . 8  |-  ( ( F `  P )  e.  ( x  i^i 
B )  <->  ( ( F `  P )  e.  x  /\  ( F `  P )  e.  B ) )
3028, 29bitr4di 198 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( ( F `  P )  e.  x  <->  ( F `  P )  e.  ( x  i^i  B ) ) )
31 imassrn 4982 . . . . . . . . . . . 12  |-  ( F
" y )  C_  ran  F
32 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  F : X
--> B )
3332frnd 5376 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ran  F  C_  B )
3431, 33sstrid 3167 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( F " y )  C_  B
)
3534biantrud 304 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( ( F " y )  C_  x 
<->  ( ( F "
y )  C_  x  /\  ( F " y
)  C_  B )
) )
36 ssin 3358 . . . . . . . . . 10  |-  ( ( ( F " y
)  C_  x  /\  ( F " y ) 
C_  B )  <->  ( F " y )  C_  (
x  i^i  B )
)
3735, 36bitrdi 196 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( ( F " y )  C_  x 
<->  ( F " y
)  C_  ( x  i^i  B ) ) )
3837anbi2d 464 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( ( P  e.  y  /\  ( F " y ) 
C_  x )  <->  ( P  e.  y  /\  ( F " y )  C_  ( x  i^i  B ) ) ) )
3938rexbidv 2478 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( E. y  e.  J  ( P  e.  y  /\  ( F " y ) 
C_  x )  <->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  ( x  i^i  B ) ) ) )
4030, 39imbi12d 234 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( (
( F `  P
)  e.  x  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y
)  C_  x )
)  <->  ( ( F `
 P )  e.  ( x  i^i  B
)  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  ( x  i^i  B ) ) ) ) )
4140ralbidv 2477 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( A. x  e.  K  (
( F `  P
)  e.  x  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y
)  C_  x )
)  <->  A. x  e.  K  ( ( F `  P )  e.  ( x  i^i  B )  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y
)  C_  ( x  i^i  B ) ) ) ) )
42 vex 2741 . . . . . . . 8  |-  x  e. 
_V
4342inex1 4138 . . . . . . 7  |-  ( x  i^i  B )  e. 
_V
4443a1i 9 . . . . . 6  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  /\  x  e.  K )  ->  (
x  i^i  B )  e.  _V )
456adantr 276 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  K  e.  Top )
4618adantr 276 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  B  e.  _V )
47 elrest 12695 . . . . . . 7  |-  ( ( K  e.  Top  /\  B  e.  _V )  ->  ( z  e.  ( Kt  B )  <->  E. x  e.  K  z  =  ( x  i^i  B ) ) )
4845, 46, 47syl2anc 411 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( z  e.  ( Kt  B )  <->  E. x  e.  K  z  =  ( x  i^i  B ) ) )
49 eleq2 2241 . . . . . . . 8  |-  ( z  =  ( x  i^i 
B )  ->  (
( F `  P
)  e.  z  <->  ( F `  P )  e.  ( x  i^i  B ) ) )
50 sseq2 3180 . . . . . . . . . 10  |-  ( z  =  ( x  i^i 
B )  ->  (
( F " y
)  C_  z  <->  ( F " y )  C_  (
x  i^i  B )
) )
5150anbi2d 464 . . . . . . . . 9  |-  ( z  =  ( x  i^i 
B )  ->  (
( P  e.  y  /\  ( F "
y )  C_  z
)  <->  ( P  e.  y  /\  ( F
" y )  C_  ( x  i^i  B ) ) ) )
5251rexbidv 2478 . . . . . . . 8  |-  ( z  =  ( x  i^i 
B )  ->  ( E. y  e.  J  ( P  e.  y  /\  ( F " y
)  C_  z )  <->  E. y  e.  J  ( P  e.  y  /\  ( F " y ) 
C_  ( x  i^i 
B ) ) ) )
5349, 52imbi12d 234 . . . . . . 7  |-  ( z  =  ( x  i^i 
B )  ->  (
( ( F `  P )  e.  z  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y
)  C_  z )
)  <->  ( ( F `
 P )  e.  ( x  i^i  B
)  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  ( x  i^i  B ) ) ) ) )
5453adantl 277 . . . . . 6  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  /\  z  =  ( x  i^i  B ) )  ->  ( (
( F `  P
)  e.  z  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y
)  C_  z )
)  <->  ( ( F `
 P )  e.  ( x  i^i  B
)  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  ( x  i^i  B ) ) ) ) )
5544, 48, 54ralxfr2d 4465 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( A. z  e.  ( Kt  B
) ( ( F `
 P )  e.  z  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  z ) )  <->  A. x  e.  K  ( ( F `  P )  e.  ( x  i^i  B
)  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  ( x  i^i  B ) ) ) ) )
5641, 55bitr4d 191 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( A. x  e.  K  (
( F `  P
)  e.  x  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y
)  C_  x )
)  <->  A. z  e.  ( Kt  B ) ( ( F `  P )  e.  z  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  z ) ) ) )
574adantr 276 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  J  e.  (TopOn `  X ) )
5813toptopon 13521 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
5945, 58sylib 122 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  K  e.  (TopOn `  Y ) )
60 simpr 110 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  P  e.  X )
61 iscnp 13702 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. x  e.  K  ( ( F `
 P )  e.  x  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  x ) ) ) ) )
6257, 59, 60, 61syl3anc 1238 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. x  e.  K  ( ( F `
 P )  e.  x  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  x ) ) ) ) )
6317adantr 276 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  B  C_  Y
)
6432, 63fssd 5379 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  F : X
--> Y )
6564biantrurd 305 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( A. x  e.  K  (
( F `  P
)  e.  x  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y
)  C_  x )
)  <->  ( F : X
--> Y  /\  A. x  e.  K  ( ( F `  P )  e.  x  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  x ) ) ) ) )
6662, 65bitr4d 191 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  A. x  e.  K  ( ( F `  P )  e.  x  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y
)  C_  x )
) ) )
67 resttopon 13674 . . . . . . 7  |-  ( ( K  e.  (TopOn `  Y )  /\  B  C_  Y )  ->  ( Kt  B )  e.  (TopOn `  B ) )
6859, 63, 67syl2anc 411 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( Kt  B
)  e.  (TopOn `  B ) )
69 iscnp 13702 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  ( Kt  B )  e.  (TopOn `  B )  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  ( Kt  B ) ) `  P )  <-> 
( F : X --> B  /\  A. z  e.  ( Kt  B ) ( ( F `  P )  e.  z  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  z ) ) ) ) )
7057, 68, 60, 69syl3anc 1238 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  ( Kt  B ) ) `  P )  <->  ( F : X --> B  /\  A. z  e.  ( Kt  B
) ( ( F `
 P )  e.  z  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  z ) ) ) ) )
7126biantrurd 305 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y
) )  ->  ( A. z  e.  ( Kt  B ) ( ( F `  P )  e.  z  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  z ) )  <->  ( F : X --> B  /\  A. z  e.  ( Kt  B
) ( ( F `
 P )  e.  z  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  z ) ) ) ) )
7271adantr 276 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( A. z  e.  ( Kt  B
) ( ( F `
 P )  e.  z  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  z ) )  <->  ( F : X --> B  /\  A. z  e.  ( Kt  B
) ( ( F `
 P )  e.  z  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  z ) ) ) ) )
7370, 72bitr4d 191 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  ( Kt  B ) ) `  P )  <->  A. z  e.  ( Kt  B ) ( ( F `  P )  e.  z  ->  E. y  e.  J  ( P  e.  y  /\  ( F " y )  C_  z ) ) ) )
7456, 66, 733bitr4d 220 . . 3  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
F  e.  ( ( J  CnP  ( Kt  B ) ) `  P
) ) )
7574ex 115 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y
) )  ->  ( P  e.  X  ->  ( F  e.  ( ( J  CnP  K ) `
 P )  <->  F  e.  ( ( J  CnP  ( Kt  B ) ) `  P ) ) ) )
7611, 25, 75pm5.21ndd 705 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y
) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  F  e.  ( ( J  CnP  ( Kt  B ) ) `  P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   _Vcvv 2738    i^i cin 3129    C_ wss 3130   U.cuni 3810   ran crn 4628   "cima 4630   -->wf 5213   ` cfv 5217  (class class class)co 5875   ↾t crest 12688   Topctop 13500  TopOnctopon 13513    CnP ccnp 13689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-map 6650  df-rest 12690  df-topgen 12709  df-top 13501  df-topon 13514  df-bases 13546  df-cnp 13692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator