| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnptoprest2 | Unicode version | ||
| Description: Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 6-Apr-2023.) |
| Ref | Expression |
|---|---|
| cnprest.1 |
|
| cnprest.2 |
|
| Ref | Expression |
|---|---|
| cnptoprest2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnprest.1 |
. . . . . . . 8
| |
| 2 | 1 | toptopon 14692 |
. . . . . . 7
|
| 3 | 2 | biimpi 120 |
. . . . . 6
|
| 4 | 3 | ad2antrr 488 |
. . . . 5
|
| 5 | 4 | adantr 276 |
. . . 4
|
| 6 | simplr 528 |
. . . . 5
| |
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | simpr 110 |
. . . 4
| |
| 9 | cnprcl2k 14880 |
. . . 4
| |
| 10 | 5, 7, 8, 9 | syl3anc 1271 |
. . 3
|
| 11 | 10 | ex 115 |
. 2
|
| 12 | 4 | adantr 276 |
. . . 4
|
| 13 | cnprest.2 |
. . . . . . . . 9
| |
| 14 | uniexg 4530 |
. . . . . . . . 9
| |
| 15 | 13, 14 | eqeltrid 2316 |
. . . . . . . 8
|
| 16 | 6, 15 | syl 14 |
. . . . . . 7
|
| 17 | simprr 531 |
. . . . . . 7
| |
| 18 | 16, 17 | ssexd 4224 |
. . . . . 6
|
| 19 | resttop 14844 |
. . . . . 6
| |
| 20 | 6, 18, 19 | syl2anc 411 |
. . . . 5
|
| 21 | 20 | adantr 276 |
. . . 4
|
| 22 | simpr 110 |
. . . 4
| |
| 23 | cnprcl2k 14880 |
. . . 4
| |
| 24 | 12, 21, 22, 23 | syl3anc 1271 |
. . 3
|
| 25 | 24 | ex 115 |
. 2
|
| 26 | simprl 529 |
. . . . . . . . . 10
| |
| 27 | 26 | ffvelcdmda 5770 |
. . . . . . . . 9
|
| 28 | 27 | biantrud 304 |
. . . . . . . 8
|
| 29 | elin 3387 |
. . . . . . . 8
| |
| 30 | 28, 29 | bitr4di 198 |
. . . . . . 7
|
| 31 | imassrn 5079 |
. . . . . . . . . . . 12
| |
| 32 | simplrl 535 |
. . . . . . . . . . . . 13
| |
| 33 | 32 | frnd 5483 |
. . . . . . . . . . . 12
|
| 34 | 31, 33 | sstrid 3235 |
. . . . . . . . . . 11
|
| 35 | 34 | biantrud 304 |
. . . . . . . . . 10
|
| 36 | ssin 3426 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | bitrdi 196 |
. . . . . . . . 9
|
| 38 | 37 | anbi2d 464 |
. . . . . . . 8
|
| 39 | 38 | rexbidv 2531 |
. . . . . . 7
|
| 40 | 30, 39 | imbi12d 234 |
. . . . . 6
|
| 41 | 40 | ralbidv 2530 |
. . . . 5
|
| 42 | vex 2802 |
. . . . . . . 8
| |
| 43 | 42 | inex1 4218 |
. . . . . . 7
|
| 44 | 43 | a1i 9 |
. . . . . 6
|
| 45 | 6 | adantr 276 |
. . . . . . 7
|
| 46 | 18 | adantr 276 |
. . . . . . 7
|
| 47 | elrest 13279 |
. . . . . . 7
| |
| 48 | 45, 46, 47 | syl2anc 411 |
. . . . . 6
|
| 49 | eleq2 2293 |
. . . . . . . 8
| |
| 50 | sseq2 3248 |
. . . . . . . . . 10
| |
| 51 | 50 | anbi2d 464 |
. . . . . . . . 9
|
| 52 | 51 | rexbidv 2531 |
. . . . . . . 8
|
| 53 | 49, 52 | imbi12d 234 |
. . . . . . 7
|
| 54 | 53 | adantl 277 |
. . . . . 6
|
| 55 | 44, 48, 54 | ralxfr2d 4555 |
. . . . 5
|
| 56 | 41, 55 | bitr4d 191 |
. . . 4
|
| 57 | 4 | adantr 276 |
. . . . . 6
|
| 58 | 13 | toptopon 14692 |
. . . . . . 7
|
| 59 | 45, 58 | sylib 122 |
. . . . . 6
|
| 60 | simpr 110 |
. . . . . 6
| |
| 61 | iscnp 14873 |
. . . . . 6
| |
| 62 | 57, 59, 60, 61 | syl3anc 1271 |
. . . . 5
|
| 63 | 17 | adantr 276 |
. . . . . . 7
|
| 64 | 32, 63 | fssd 5486 |
. . . . . 6
|
| 65 | 64 | biantrurd 305 |
. . . . 5
|
| 66 | 62, 65 | bitr4d 191 |
. . . 4
|
| 67 | resttopon 14845 |
. . . . . . 7
| |
| 68 | 59, 63, 67 | syl2anc 411 |
. . . . . 6
|
| 69 | iscnp 14873 |
. . . . . 6
| |
| 70 | 57, 68, 60, 69 | syl3anc 1271 |
. . . . 5
|
| 71 | 26 | biantrurd 305 |
. . . . . 6
|
| 72 | 71 | adantr 276 |
. . . . 5
|
| 73 | 70, 72 | bitr4d 191 |
. . . 4
|
| 74 | 56, 66, 73 | 3bitr4d 220 |
. . 3
|
| 75 | 74 | ex 115 |
. 2
|
| 76 | 11, 25, 75 | pm5.21ndd 710 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-rest 13274 df-topgen 13293 df-top 14672 df-topon 14685 df-bases 14717 df-cnp 14863 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |