ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemfun Unicode version

Theorem ennnfonelemfun 12372
Description: Lemma for ennnfone 12380. 
L is a function. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfone.l  |-  L  = 
U_ i  e.  NN0  ( H `  i )
Assertion
Ref Expression
ennnfonelemfun  |-  ( ph  ->  Fun  L )
Distinct variable groups:    A, j, x, y    x, F, y, j    k, F, n, j    j, G    i, H    j, H, x, y   
j, J    x, N, y    ph, j, x, y
Allowed substitution hints:    ph( i, k, n)    A( i, k, n)    F( i)    G( x, y, i, k, n)    H( k, n)    J( x, y, i, k, n)    L( x, y, i, j, k, n)    N( i, j, k, n)

Proof of Theorem ennnfonelemfun
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . . . . . . 9  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . . . . . . 9  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . . . . . . 9  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . . . . . . 9  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . . . . . . 9  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . . . . . . 9  |-  H  =  seq 0 ( G ,  J )
81, 2, 3, 4, 5, 6, 7ennnfonelemh 12359 . . . . . . . 8  |-  ( ph  ->  H : NN0 --> ( A 
^pm  om ) )
98frnd 5357 . . . . . . 7  |-  ( ph  ->  ran  H  C_  ( A  ^pm  om ) )
109sselda 3147 . . . . . 6  |-  ( (
ph  /\  s  e.  ran  H )  ->  s  e.  ( A  ^pm  om )
)
11 pmfun 6646 . . . . . 6  |-  ( s  e.  ( A  ^pm  om )  ->  Fun  s )
1210, 11syl 14 . . . . 5  |-  ( (
ph  /\  s  e.  ran  H )  ->  Fun  s )
131ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
142ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  F : om -onto-> A )
153ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
16 simplr 525 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  s  e.  ran  H )
17 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  t  e.  ran  H )
1813, 14, 15, 4, 5, 6, 7, 16, 17ennnfonelemrnh 12371 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  ( s  C_  t  \/  t  C_  s ) )
1918ralrimiva 2543 . . . . 5  |-  ( (
ph  /\  s  e.  ran  H )  ->  A. t  e.  ran  H ( s 
C_  t  \/  t  C_  s ) )
2012, 19jca 304 . . . 4  |-  ( (
ph  /\  s  e.  ran  H )  ->  ( Fun  s  /\  A. t  e.  ran  H ( s 
C_  t  \/  t  C_  s ) ) )
2120ralrimiva 2543 . . 3  |-  ( ph  ->  A. s  e.  ran  H ( Fun  s  /\  A. t  e.  ran  H
( s  C_  t  \/  t  C_  s ) ) )
22 fununi 5266 . . 3  |-  ( A. s  e.  ran  H ( Fun  s  /\  A. t  e.  ran  H ( s  C_  t  \/  t  C_  s ) )  ->  Fun  U. ran  H
)
2321, 22syl 14 . 2  |-  ( ph  ->  Fun  U. ran  H
)
24 ennnfone.l . . . 4  |-  L  = 
U_ i  e.  NN0  ( H `  i )
258ffnd 5348 . . . . 5  |-  ( ph  ->  H  Fn  NN0 )
26 fniunfv 5741 . . . . 5  |-  ( H  Fn  NN0  ->  U_ i  e.  NN0  ( H `  i )  =  U. ran  H )
2725, 26syl 14 . . . 4  |-  ( ph  ->  U_ i  e.  NN0  ( H `  i )  =  U. ran  H
)
2824, 27eqtrid 2215 . . 3  |-  ( ph  ->  L  =  U. ran  H )
2928funeqd 5220 . 2  |-  ( ph  ->  ( Fun  L  <->  Fun  U. ran  H ) )
3023, 29mpbird 166 1  |-  ( ph  ->  Fun  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448   E.wrex 2449    u. cun 3119    C_ wss 3121   (/)c0 3414   ifcif 3526   {csn 3583   <.cop 3586   U.cuni 3796   U_ciun 3873    |-> cmpt 4050   suc csuc 4350   omcom 4574   `'ccnv 4610   dom cdm 4611   ran crn 4612   "cima 4614   Fun wfun 5192    Fn wfn 5193   -onto->wfo 5196   ` cfv 5198  (class class class)co 5853    e. cmpo 5855  freccfrec 6369    ^pm cpm 6627   0cc0 7774   1c1 7775    + caddc 7777    - cmin 8090   NN0cn0 9135   ZZcz 9212    seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pm 6629  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402
This theorem is referenced by:  ennnfonelemf1  12373
  Copyright terms: Public domain W3C validator