ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemfun Unicode version

Theorem ennnfonelemfun 11930
Description: Lemma for ennnfone 11938. 
L is a function. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfone.l  |-  L  = 
U_ i  e.  NN0  ( H `  i )
Assertion
Ref Expression
ennnfonelemfun  |-  ( ph  ->  Fun  L )
Distinct variable groups:    A, j, x, y    x, F, y, j    k, F, n, j    j, G    i, H    j, H, x, y   
j, J    x, N, y    ph, j, x, y
Allowed substitution hints:    ph( i, k, n)    A( i, k, n)    F( i)    G( x, y, i, k, n)    H( k, n)    J( x, y, i, k, n)    L( x, y, i, j, k, n)    N( i, j, k, n)

Proof of Theorem ennnfonelemfun
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . . . . . . 9  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . . . . . . 9  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . . . . . . 9  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . . . . . . 9  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . . . . . . 9  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . . . . . . 9  |-  H  =  seq 0 ( G ,  J )
81, 2, 3, 4, 5, 6, 7ennnfonelemh 11917 . . . . . . . 8  |-  ( ph  ->  H : NN0 --> ( A 
^pm  om ) )
98frnd 5282 . . . . . . 7  |-  ( ph  ->  ran  H  C_  ( A  ^pm  om ) )
109sselda 3097 . . . . . 6  |-  ( (
ph  /\  s  e.  ran  H )  ->  s  e.  ( A  ^pm  om )
)
11 pmfun 6562 . . . . . 6  |-  ( s  e.  ( A  ^pm  om )  ->  Fun  s )
1210, 11syl 14 . . . . 5  |-  ( (
ph  /\  s  e.  ran  H )  ->  Fun  s )
131ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
142ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  F : om -onto-> A )
153ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
16 simplr 519 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  s  e.  ran  H )
17 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  t  e.  ran  H )
1813, 14, 15, 4, 5, 6, 7, 16, 17ennnfonelemrnh 11929 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  ( s  C_  t  \/  t  C_  s ) )
1918ralrimiva 2505 . . . . 5  |-  ( (
ph  /\  s  e.  ran  H )  ->  A. t  e.  ran  H ( s 
C_  t  \/  t  C_  s ) )
2012, 19jca 304 . . . 4  |-  ( (
ph  /\  s  e.  ran  H )  ->  ( Fun  s  /\  A. t  e.  ran  H ( s 
C_  t  \/  t  C_  s ) ) )
2120ralrimiva 2505 . . 3  |-  ( ph  ->  A. s  e.  ran  H ( Fun  s  /\  A. t  e.  ran  H
( s  C_  t  \/  t  C_  s ) ) )
22 fununi 5191 . . 3  |-  ( A. s  e.  ran  H ( Fun  s  /\  A. t  e.  ran  H ( s  C_  t  \/  t  C_  s ) )  ->  Fun  U. ran  H
)
2321, 22syl 14 . 2  |-  ( ph  ->  Fun  U. ran  H
)
24 ennnfone.l . . . 4  |-  L  = 
U_ i  e.  NN0  ( H `  i )
258ffnd 5273 . . . . 5  |-  ( ph  ->  H  Fn  NN0 )
26 fniunfv 5663 . . . . 5  |-  ( H  Fn  NN0  ->  U_ i  e.  NN0  ( H `  i )  =  U. ran  H )
2725, 26syl 14 . . . 4  |-  ( ph  ->  U_ i  e.  NN0  ( H `  i )  =  U. ran  H
)
2824, 27syl5eq 2184 . . 3  |-  ( ph  ->  L  =  U. ran  H )
2928funeqd 5145 . 2  |-  ( ph  ->  ( Fun  L  <->  Fun  U. ran  H ) )
3023, 29mpbird 166 1  |-  ( ph  ->  Fun  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697  DECID wdc 819    = wceq 1331    e. wcel 1480    =/= wne 2308   A.wral 2416   E.wrex 2417    u. cun 3069    C_ wss 3071   (/)c0 3363   ifcif 3474   {csn 3527   <.cop 3530   U.cuni 3736   U_ciun 3813    |-> cmpt 3989   suc csuc 4287   omcom 4504   `'ccnv 4538   dom cdm 4539   ran crn 4540   "cima 4542   Fun wfun 5117    Fn wfn 5118   -onto->wfo 5121   ` cfv 5123  (class class class)co 5774    e. cmpo 5776  freccfrec 6287    ^pm cpm 6543   0cc0 7620   1c1 7621    + caddc 7623    - cmin 7933   NN0cn0 8977   ZZcz 9054    seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pm 6545  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219
This theorem is referenced by:  ennnfonelemf1  11931
  Copyright terms: Public domain W3C validator