ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unirnblps Unicode version

Theorem unirnblps 14590
Description: The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
unirnblps  |-  ( D  e.  (PsMet `  X
)  ->  U. ran  ( ball `  D )  =  X )

Proof of Theorem unirnblps
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 blfps 14577 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D ) : ( X  X.  RR* ) --> ~P X )
21frnd 5413 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ran  ( ball `  D )  C_  ~P X )
3 sspwuni 3997 . . 3  |-  ( ran  ( ball `  D
)  C_  ~P X  <->  U.
ran  ( ball `  D
)  C_  X )
42, 3sylib 122 . 2  |-  ( D  e.  (PsMet `  X
)  ->  U. ran  ( ball `  D )  C_  X )
5 1rp 9723 . . . 4  |-  1  e.  RR+
6 blcntrps 14583 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X  /\  1  e.  RR+ )  ->  x  e.  ( x ( ball `  D ) 1 ) )
75, 6mp3an3 1337 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X )  ->  x  e.  ( x ( ball `  D ) 1 ) )
8 rpxr 9727 . . . . 5  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
95, 8ax-mp 5 . . . 4  |-  1  e.  RR*
10 blelrnps 14587 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X  /\  1  e.  RR* )  ->  (
x ( ball `  D
) 1 )  e. 
ran  ( ball `  D
) )
119, 10mp3an3 1337 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X )  ->  (
x ( ball `  D
) 1 )  e. 
ran  ( ball `  D
) )
12 elunii 3840 . . 3  |-  ( ( x  e.  ( x ( ball `  D
) 1 )  /\  ( x ( ball `  D ) 1 )  e.  ran  ( ball `  D ) )  ->  x  e.  U. ran  ( ball `  D ) )
137, 11, 12syl2anc 411 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X )  ->  x  e.  U. ran  ( ball `  D ) )
144, 13eqelssd 3198 1  |-  ( D  e.  (PsMet `  X
)  ->  U. ran  ( ball `  D )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    C_ wss 3153   ~Pcpw 3601   U.cuni 3835    X. cxp 4657   ran crn 4660   ` cfv 5254  (class class class)co 5918   1c1 7873   RR*cxr 8053   RR+crp 9719  PsMetcpsmet 14031   ballcbl 14034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-0lt1 7978  ax-rnegex 7981
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-rp 9720  df-psmet 14039  df-bl 14042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator