ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unirnblps Unicode version

Theorem unirnblps 13062
Description: The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
unirnblps  |-  ( D  e.  (PsMet `  X
)  ->  U. ran  ( ball `  D )  =  X )

Proof of Theorem unirnblps
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 blfps 13049 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D ) : ( X  X.  RR* ) --> ~P X )
21frnd 5347 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ran  ( ball `  D )  C_  ~P X )
3 sspwuni 3950 . . 3  |-  ( ran  ( ball `  D
)  C_  ~P X  <->  U.
ran  ( ball `  D
)  C_  X )
42, 3sylib 121 . 2  |-  ( D  e.  (PsMet `  X
)  ->  U. ran  ( ball `  D )  C_  X )
5 1rp 9593 . . . 4  |-  1  e.  RR+
6 blcntrps 13055 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X  /\  1  e.  RR+ )  ->  x  e.  ( x ( ball `  D ) 1 ) )
75, 6mp3an3 1316 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X )  ->  x  e.  ( x ( ball `  D ) 1 ) )
8 rpxr 9597 . . . . 5  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
95, 8ax-mp 5 . . . 4  |-  1  e.  RR*
10 blelrnps 13059 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X  /\  1  e.  RR* )  ->  (
x ( ball `  D
) 1 )  e. 
ran  ( ball `  D
) )
119, 10mp3an3 1316 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X )  ->  (
x ( ball `  D
) 1 )  e. 
ran  ( ball `  D
) )
12 elunii 3794 . . 3  |-  ( ( x  e.  ( x ( ball `  D
) 1 )  /\  ( x ( ball `  D ) 1 )  e.  ran  ( ball `  D ) )  ->  x  e.  U. ran  ( ball `  D ) )
137, 11, 12syl2anc 409 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X )  ->  x  e.  U. ran  ( ball `  D ) )
144, 13eqelssd 3161 1  |-  ( D  e.  (PsMet `  X
)  ->  U. ran  ( ball `  D )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    C_ wss 3116   ~Pcpw 3559   U.cuni 3789    X. cxp 4602   ran crn 4605   ` cfv 5188  (class class class)co 5842   1c1 7754   RR*cxr 7932   RR+crp 9589  PsMetcpsmet 12619   ballcbl 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-0lt1 7859  ax-rnegex 7862
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-rp 9590  df-psmet 12627  df-bl 12630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator