ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unirnblps Unicode version

Theorem unirnblps 14658
Description: The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
unirnblps  |-  ( D  e.  (PsMet `  X
)  ->  U. ran  ( ball `  D )  =  X )

Proof of Theorem unirnblps
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 blfps 14645 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D ) : ( X  X.  RR* ) --> ~P X )
21frnd 5417 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ran  ( ball `  D )  C_  ~P X )
3 sspwuni 4001 . . 3  |-  ( ran  ( ball `  D
)  C_  ~P X  <->  U.
ran  ( ball `  D
)  C_  X )
42, 3sylib 122 . 2  |-  ( D  e.  (PsMet `  X
)  ->  U. ran  ( ball `  D )  C_  X )
5 1rp 9732 . . . 4  |-  1  e.  RR+
6 blcntrps 14651 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X  /\  1  e.  RR+ )  ->  x  e.  ( x ( ball `  D ) 1 ) )
75, 6mp3an3 1337 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X )  ->  x  e.  ( x ( ball `  D ) 1 ) )
8 rpxr 9736 . . . . 5  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
95, 8ax-mp 5 . . . 4  |-  1  e.  RR*
10 blelrnps 14655 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X  /\  1  e.  RR* )  ->  (
x ( ball `  D
) 1 )  e. 
ran  ( ball `  D
) )
119, 10mp3an3 1337 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X )  ->  (
x ( ball `  D
) 1 )  e. 
ran  ( ball `  D
) )
12 elunii 3844 . . 3  |-  ( ( x  e.  ( x ( ball `  D
) 1 )  /\  ( x ( ball `  D ) 1 )  e.  ran  ( ball `  D ) )  ->  x  e.  U. ran  ( ball `  D ) )
137, 11, 12syl2anc 411 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X )  ->  x  e.  U. ran  ( ball `  D ) )
144, 13eqelssd 3202 1  |-  ( D  e.  (PsMet `  X
)  ->  U. ran  ( ball `  D )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    C_ wss 3157   ~Pcpw 3605   U.cuni 3839    X. cxp 4661   ran crn 4664   ` cfv 5258  (class class class)co 5922   1c1 7880   RR*cxr 8060   RR+crp 9728  PsMetcpsmet 14091   ballcbl 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-0lt1 7985  ax-rnegex 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-rp 9729  df-psmet 14099  df-bl 14102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator