ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrest2r Unicode version

Theorem cnrest2r 12395
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
cnrest2r  |-  ( K  e.  Top  ->  ( J  Cn  ( Kt  B ) )  C_  ( J  Cn  K ) )

Proof of Theorem cnrest2r
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  f  e.  ( J  Cn  ( Kt  B ) ) )
2 cntop2 12360 . . . . . . . 8  |-  ( f  e.  ( J  Cn  ( Kt  B ) )  -> 
( Kt  B )  e.  Top )
32adantl 275 . . . . . . 7  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( Kt  B )  e.  Top )
4 restrcl 12325 . . . . . . 7  |-  ( ( Kt  B )  e.  Top  ->  ( K  e.  _V  /\  B  e.  _V )
)
5 eqid 2137 . . . . . . . 8  |-  U. K  =  U. K
65restin 12334 . . . . . . 7  |-  ( ( K  e.  _V  /\  B  e.  _V )  ->  ( Kt  B )  =  ( Kt  ( B  i^i  U. K ) ) )
73, 4, 63syl 17 . . . . . 6  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( Kt  B )  =  ( Kt  ( B  i^i  U. K ) ) )
87oveq2d 5783 . . . . 5  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( J  Cn  ( Kt  B ) )  =  ( J  Cn  ( Kt  ( B  i^i  U. K
) ) ) )
91, 8eleqtrd 2216 . . . 4  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  f  e.  ( J  Cn  ( Kt  ( B  i^i  U. K
) ) ) )
10 simpl 108 . . . . . 6  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  K  e.  Top )
115toptopon 12174 . . . . . 6  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
1210, 11sylib 121 . . . . 5  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  K  e.  (TopOn `  U. K ) )
13 cntop1 12359 . . . . . . . . 9  |-  ( f  e.  ( J  Cn  ( Kt  B ) )  ->  J  e.  Top )
1413adantl 275 . . . . . . . 8  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  J  e.  Top )
15 eqid 2137 . . . . . . . . 9  |-  U. J  =  U. J
1615toptopon 12174 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
1714, 16sylib 121 . . . . . . 7  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  J  e.  (TopOn `  U. J ) )
18 inss2 3292 . . . . . . . 8  |-  ( B  i^i  U. K ) 
C_  U. K
19 resttopon 12329 . . . . . . . 8  |-  ( ( K  e.  (TopOn `  U. K )  /\  ( B  i^i  U. K ) 
C_  U. K )  -> 
( Kt  ( B  i^i  U. K ) )  e.  (TopOn `  ( B  i^i  U. K ) ) )
2012, 18, 19sylancl 409 . . . . . . 7  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( Kt  ( B  i^i  U. K ) )  e.  (TopOn `  ( B  i^i  U. K
) ) )
21 cnf2 12363 . . . . . . 7  |-  ( ( J  e.  (TopOn `  U. J )  /\  ( Kt  ( B  i^i  U. K
) )  e.  (TopOn `  ( B  i^i  U. K ) )  /\  f  e.  ( J  Cn  ( Kt  ( B  i^i  U. K ) ) ) )  ->  f : U. J --> ( B  i^i  U. K ) )
2217, 20, 9, 21syl3anc 1216 . . . . . 6  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  f : U. J
--> ( B  i^i  U. K ) )
2322frnd 5277 . . . . 5  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ran  f  C_  ( B  i^i  U. K
) )
2418a1i 9 . . . . 5  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( B  i^i  U. K )  C_  U. K
)
25 cnrest2 12394 . . . . 5  |-  ( ( K  e.  (TopOn `  U. K )  /\  ran  f  C_  ( B  i^i  U. K )  /\  ( B  i^i  U. K ) 
C_  U. K )  -> 
( f  e.  ( J  Cn  K )  <-> 
f  e.  ( J  Cn  ( Kt  ( B  i^i  U. K ) ) ) ) )
2612, 23, 24, 25syl3anc 1216 . . . 4  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( f  e.  ( J  Cn  K
)  <->  f  e.  ( J  Cn  ( Kt  ( B  i^i  U. K
) ) ) ) )
279, 26mpbird 166 . . 3  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  f  e.  ( J  Cn  K ) )
2827ex 114 . 2  |-  ( K  e.  Top  ->  (
f  e.  ( J  Cn  ( Kt  B ) )  ->  f  e.  ( J  Cn  K
) ) )
2928ssrdv 3098 1  |-  ( K  e.  Top  ->  ( J  Cn  ( Kt  B ) )  C_  ( J  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   _Vcvv 2681    i^i cin 3065    C_ wss 3066   U.cuni 3731   ran crn 4535   -->wf 5114   ` cfv 5118  (class class class)co 5767   ↾t crest 12109   Topctop 12153  TopOnctopon 12166    Cn ccn 12343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-map 6537  df-rest 12111  df-topgen 12130  df-top 12154  df-topon 12167  df-bases 12199  df-cn 12346
This theorem is referenced by:  cnrehmeocntop  12751
  Copyright terms: Public domain W3C validator