Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnrest2r | Unicode version |
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.) |
Ref | Expression |
---|---|
cnrest2r | ↾t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 ↾t ↾t | |
2 | cntop2 12996 | . . . . . . . 8 ↾t ↾t | |
3 | 2 | adantl 275 | . . . . . . 7 ↾t ↾t |
4 | restrcl 12961 | . . . . . . 7 ↾t | |
5 | eqid 2170 | . . . . . . . 8 | |
6 | 5 | restin 12970 | . . . . . . 7 ↾t ↾t |
7 | 3, 4, 6 | 3syl 17 | . . . . . 6 ↾t ↾t ↾t |
8 | 7 | oveq2d 5869 | . . . . 5 ↾t ↾t ↾t |
9 | 1, 8 | eleqtrd 2249 | . . . 4 ↾t ↾t |
10 | simpl 108 | . . . . . 6 ↾t | |
11 | 5 | toptopon 12810 | . . . . . 6 TopOn |
12 | 10, 11 | sylib 121 | . . . . 5 ↾t TopOn |
13 | cntop1 12995 | . . . . . . . . 9 ↾t | |
14 | 13 | adantl 275 | . . . . . . . 8 ↾t |
15 | eqid 2170 | . . . . . . . . 9 | |
16 | 15 | toptopon 12810 | . . . . . . . 8 TopOn |
17 | 14, 16 | sylib 121 | . . . . . . 7 ↾t TopOn |
18 | inss2 3348 | . . . . . . . 8 | |
19 | resttopon 12965 | . . . . . . . 8 TopOn ↾t TopOn | |
20 | 12, 18, 19 | sylancl 411 | . . . . . . 7 ↾t ↾t TopOn |
21 | cnf2 12999 | . . . . . . 7 TopOn ↾t TopOn ↾t | |
22 | 17, 20, 9, 21 | syl3anc 1233 | . . . . . 6 ↾t |
23 | 22 | frnd 5357 | . . . . 5 ↾t |
24 | 18 | a1i 9 | . . . . 5 ↾t |
25 | cnrest2 13030 | . . . . 5 TopOn ↾t | |
26 | 12, 23, 24, 25 | syl3anc 1233 | . . . 4 ↾t ↾t |
27 | 9, 26 | mpbird 166 | . . 3 ↾t |
28 | 27 | ex 114 | . 2 ↾t |
29 | 28 | ssrdv 3153 | 1 ↾t |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cvv 2730 cin 3120 wss 3121 cuni 3796 crn 4612 wf 5194 cfv 5198 (class class class)co 5853 ↾t crest 12579 ctop 12789 TopOnctopon 12802 ccn 12979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-rest 12581 df-topgen 12600 df-top 12790 df-topon 12803 df-bases 12835 df-cn 12982 |
This theorem is referenced by: cnrehmeocntop 13387 |
Copyright terms: Public domain | W3C validator |