ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrest2r Unicode version

Theorem cnrest2r 12242
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
cnrest2r  |-  ( K  e.  Top  ->  ( J  Cn  ( Kt  B ) )  C_  ( J  Cn  K ) )

Proof of Theorem cnrest2r
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  f  e.  ( J  Cn  ( Kt  B ) ) )
2 cntop2 12207 . . . . . . . 8  |-  ( f  e.  ( J  Cn  ( Kt  B ) )  -> 
( Kt  B )  e.  Top )
32adantl 273 . . . . . . 7  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( Kt  B )  e.  Top )
4 restrcl 12173 . . . . . . 7  |-  ( ( Kt  B )  e.  Top  ->  ( K  e.  _V  /\  B  e.  _V )
)
5 eqid 2113 . . . . . . . 8  |-  U. K  =  U. K
65restin 12182 . . . . . . 7  |-  ( ( K  e.  _V  /\  B  e.  _V )  ->  ( Kt  B )  =  ( Kt  ( B  i^i  U. K ) ) )
73, 4, 63syl 17 . . . . . 6  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( Kt  B )  =  ( Kt  ( B  i^i  U. K ) ) )
87oveq2d 5742 . . . . 5  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( J  Cn  ( Kt  B ) )  =  ( J  Cn  ( Kt  ( B  i^i  U. K
) ) ) )
91, 8eleqtrd 2191 . . . 4  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  f  e.  ( J  Cn  ( Kt  ( B  i^i  U. K
) ) ) )
10 simpl 108 . . . . . 6  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  K  e.  Top )
115toptopon 12022 . . . . . 6  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
1210, 11sylib 121 . . . . 5  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  K  e.  (TopOn `  U. K ) )
13 cntop1 12206 . . . . . . . . 9  |-  ( f  e.  ( J  Cn  ( Kt  B ) )  ->  J  e.  Top )
1413adantl 273 . . . . . . . 8  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  J  e.  Top )
15 eqid 2113 . . . . . . . . 9  |-  U. J  =  U. J
1615toptopon 12022 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
1714, 16sylib 121 . . . . . . 7  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  J  e.  (TopOn `  U. J ) )
18 inss2 3261 . . . . . . . 8  |-  ( B  i^i  U. K ) 
C_  U. K
19 resttopon 12177 . . . . . . . 8  |-  ( ( K  e.  (TopOn `  U. K )  /\  ( B  i^i  U. K ) 
C_  U. K )  -> 
( Kt  ( B  i^i  U. K ) )  e.  (TopOn `  ( B  i^i  U. K ) ) )
2012, 18, 19sylancl 407 . . . . . . 7  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( Kt  ( B  i^i  U. K ) )  e.  (TopOn `  ( B  i^i  U. K
) ) )
21 cnf2 12210 . . . . . . 7  |-  ( ( J  e.  (TopOn `  U. J )  /\  ( Kt  ( B  i^i  U. K
) )  e.  (TopOn `  ( B  i^i  U. K ) )  /\  f  e.  ( J  Cn  ( Kt  ( B  i^i  U. K ) ) ) )  ->  f : U. J --> ( B  i^i  U. K ) )
2217, 20, 9, 21syl3anc 1197 . . . . . 6  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  f : U. J
--> ( B  i^i  U. K ) )
2322frnd 5238 . . . . 5  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ran  f  C_  ( B  i^i  U. K
) )
2418a1i 9 . . . . 5  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( B  i^i  U. K )  C_  U. K
)
25 cnrest2 12241 . . . . 5  |-  ( ( K  e.  (TopOn `  U. K )  /\  ran  f  C_  ( B  i^i  U. K )  /\  ( B  i^i  U. K ) 
C_  U. K )  -> 
( f  e.  ( J  Cn  K )  <-> 
f  e.  ( J  Cn  ( Kt  ( B  i^i  U. K ) ) ) ) )
2612, 23, 24, 25syl3anc 1197 . . . 4  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( f  e.  ( J  Cn  K
)  <->  f  e.  ( J  Cn  ( Kt  ( B  i^i  U. K
) ) ) ) )
279, 26mpbird 166 . . 3  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  f  e.  ( J  Cn  K ) )
2827ex 114 . 2  |-  ( K  e.  Top  ->  (
f  e.  ( J  Cn  ( Kt  B ) )  ->  f  e.  ( J  Cn  K
) ) )
2928ssrdv 3067 1  |-  ( K  e.  Top  ->  ( J  Cn  ( Kt  B ) )  C_  ( J  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1312    e. wcel 1461   _Vcvv 2655    i^i cin 3034    C_ wss 3035   U.cuni 3700   ran crn 4498   -->wf 5075   ` cfv 5079  (class class class)co 5726   ↾t crest 11957   Topctop 12001  TopOnctopon 12014    Cn ccn 12191
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-map 6496  df-rest 11959  df-topgen 11978  df-top 12002  df-topon 12015  df-bases 12047  df-cn 12194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator