Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnrest2r | Unicode version |
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.) |
Ref | Expression |
---|---|
cnrest2r | ↾t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 ↾t ↾t | |
2 | cntop2 12842 | . . . . . . . 8 ↾t ↾t | |
3 | 2 | adantl 275 | . . . . . . 7 ↾t ↾t |
4 | restrcl 12807 | . . . . . . 7 ↾t | |
5 | eqid 2165 | . . . . . . . 8 | |
6 | 5 | restin 12816 | . . . . . . 7 ↾t ↾t |
7 | 3, 4, 6 | 3syl 17 | . . . . . 6 ↾t ↾t ↾t |
8 | 7 | oveq2d 5858 | . . . . 5 ↾t ↾t ↾t |
9 | 1, 8 | eleqtrd 2245 | . . . 4 ↾t ↾t |
10 | simpl 108 | . . . . . 6 ↾t | |
11 | 5 | toptopon 12656 | . . . . . 6 TopOn |
12 | 10, 11 | sylib 121 | . . . . 5 ↾t TopOn |
13 | cntop1 12841 | . . . . . . . . 9 ↾t | |
14 | 13 | adantl 275 | . . . . . . . 8 ↾t |
15 | eqid 2165 | . . . . . . . . 9 | |
16 | 15 | toptopon 12656 | . . . . . . . 8 TopOn |
17 | 14, 16 | sylib 121 | . . . . . . 7 ↾t TopOn |
18 | inss2 3343 | . . . . . . . 8 | |
19 | resttopon 12811 | . . . . . . . 8 TopOn ↾t TopOn | |
20 | 12, 18, 19 | sylancl 410 | . . . . . . 7 ↾t ↾t TopOn |
21 | cnf2 12845 | . . . . . . 7 TopOn ↾t TopOn ↾t | |
22 | 17, 20, 9, 21 | syl3anc 1228 | . . . . . 6 ↾t |
23 | 22 | frnd 5347 | . . . . 5 ↾t |
24 | 18 | a1i 9 | . . . . 5 ↾t |
25 | cnrest2 12876 | . . . . 5 TopOn ↾t | |
26 | 12, 23, 24, 25 | syl3anc 1228 | . . . 4 ↾t ↾t |
27 | 9, 26 | mpbird 166 | . . 3 ↾t |
28 | 27 | ex 114 | . 2 ↾t |
29 | 28 | ssrdv 3148 | 1 ↾t |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 cin 3115 wss 3116 cuni 3789 crn 4605 wf 5184 cfv 5188 (class class class)co 5842 ↾t crest 12556 ctop 12635 TopOnctopon 12648 ccn 12825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-rest 12558 df-topgen 12577 df-top 12636 df-topon 12649 df-bases 12681 df-cn 12828 |
This theorem is referenced by: cnrehmeocntop 13233 |
Copyright terms: Public domain | W3C validator |