ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrest2r Unicode version

Theorem cnrest2r 14557
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
cnrest2r  |-  ( K  e.  Top  ->  ( J  Cn  ( Kt  B ) )  C_  ( J  Cn  K ) )

Proof of Theorem cnrest2r
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  f  e.  ( J  Cn  ( Kt  B ) ) )
2 cntop2 14522 . . . . . . . 8  |-  ( f  e.  ( J  Cn  ( Kt  B ) )  -> 
( Kt  B )  e.  Top )
32adantl 277 . . . . . . 7  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( Kt  B )  e.  Top )
4 restrcl 14487 . . . . . . 7  |-  ( ( Kt  B )  e.  Top  ->  ( K  e.  _V  /\  B  e.  _V )
)
5 eqid 2196 . . . . . . . 8  |-  U. K  =  U. K
65restin 14496 . . . . . . 7  |-  ( ( K  e.  _V  /\  B  e.  _V )  ->  ( Kt  B )  =  ( Kt  ( B  i^i  U. K ) ) )
73, 4, 63syl 17 . . . . . 6  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( Kt  B )  =  ( Kt  ( B  i^i  U. K ) ) )
87oveq2d 5941 . . . . 5  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( J  Cn  ( Kt  B ) )  =  ( J  Cn  ( Kt  ( B  i^i  U. K
) ) ) )
91, 8eleqtrd 2275 . . . 4  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  f  e.  ( J  Cn  ( Kt  ( B  i^i  U. K
) ) ) )
10 simpl 109 . . . . . 6  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  K  e.  Top )
115toptopon 14338 . . . . . 6  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
1210, 11sylib 122 . . . . 5  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  K  e.  (TopOn `  U. K ) )
13 cntop1 14521 . . . . . . . . 9  |-  ( f  e.  ( J  Cn  ( Kt  B ) )  ->  J  e.  Top )
1413adantl 277 . . . . . . . 8  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  J  e.  Top )
15 eqid 2196 . . . . . . . . 9  |-  U. J  =  U. J
1615toptopon 14338 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
1714, 16sylib 122 . . . . . . 7  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  J  e.  (TopOn `  U. J ) )
18 inss2 3385 . . . . . . . 8  |-  ( B  i^i  U. K ) 
C_  U. K
19 resttopon 14491 . . . . . . . 8  |-  ( ( K  e.  (TopOn `  U. K )  /\  ( B  i^i  U. K ) 
C_  U. K )  -> 
( Kt  ( B  i^i  U. K ) )  e.  (TopOn `  ( B  i^i  U. K ) ) )
2012, 18, 19sylancl 413 . . . . . . 7  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( Kt  ( B  i^i  U. K ) )  e.  (TopOn `  ( B  i^i  U. K
) ) )
21 cnf2 14525 . . . . . . 7  |-  ( ( J  e.  (TopOn `  U. J )  /\  ( Kt  ( B  i^i  U. K
) )  e.  (TopOn `  ( B  i^i  U. K ) )  /\  f  e.  ( J  Cn  ( Kt  ( B  i^i  U. K ) ) ) )  ->  f : U. J --> ( B  i^i  U. K ) )
2217, 20, 9, 21syl3anc 1249 . . . . . 6  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  f : U. J
--> ( B  i^i  U. K ) )
2322frnd 5420 . . . . 5  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ran  f  C_  ( B  i^i  U. K
) )
2418a1i 9 . . . . 5  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( B  i^i  U. K )  C_  U. K
)
25 cnrest2 14556 . . . . 5  |-  ( ( K  e.  (TopOn `  U. K )  /\  ran  f  C_  ( B  i^i  U. K )  /\  ( B  i^i  U. K ) 
C_  U. K )  -> 
( f  e.  ( J  Cn  K )  <-> 
f  e.  ( J  Cn  ( Kt  ( B  i^i  U. K ) ) ) ) )
2612, 23, 24, 25syl3anc 1249 . . . 4  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( f  e.  ( J  Cn  K
)  <->  f  e.  ( J  Cn  ( Kt  ( B  i^i  U. K
) ) ) ) )
279, 26mpbird 167 . . 3  |-  ( ( K  e.  Top  /\  f  e.  ( J  Cn  ( Kt  B ) ) )  ->  f  e.  ( J  Cn  K ) )
2827ex 115 . 2  |-  ( K  e.  Top  ->  (
f  e.  ( J  Cn  ( Kt  B ) )  ->  f  e.  ( J  Cn  K
) ) )
2928ssrdv 3190 1  |-  ( K  e.  Top  ->  ( J  Cn  ( Kt  B ) )  C_  ( J  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763    i^i cin 3156    C_ wss 3157   U.cuni 3840   ran crn 4665   -->wf 5255   ` cfv 5259  (class class class)co 5925   ↾t crest 12941   Topctop 14317  TopOnctopon 14330    Cn ccn 14505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-rest 12943  df-topgen 12962  df-top 14318  df-topon 14331  df-bases 14363  df-cn 14508
This theorem is referenced by:  cnrehmeocntop  14930
  Copyright terms: Public domain W3C validator