| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frnd | GIF version | ||
| Description: Deduction form of frn 5433. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| frnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| frnd | ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | frn 5433 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3165 ran crn 4675 ⟶wf 5266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-f 5274 |
| This theorem is referenced by: difinfsn 7201 ccatrn 11063 4sqlem11 12695 ennnfonelemfun 12759 ennnfonelemf1 12760 mhmima 13294 ghmrn 13564 conjnmz 13586 tgrest 14612 resttopon 14614 rest0 14622 cnrest2r 14680 cnptoprest2 14683 lmss 14689 txbasval 14710 upxp 14715 uptx 14717 hmeores 14758 unirnblps 14865 unirnbl 14866 lgseisenlem4 15521 |
| Copyright terms: Public domain | W3C validator |