ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frnd GIF version

Theorem frnd 5394
Description: Deduction form of frn 5393. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
frnd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
frnd (𝜑 → ran 𝐹𝐵)

Proof of Theorem frnd
StepHypRef Expression
1 frnd.1 . 2 (𝜑𝐹:𝐴𝐵)
2 frn 5393 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2syl 14 1 (𝜑 → ran 𝐹𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3144  ran crn 4645  wf 5231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-f 5239
This theorem is referenced by:  difinfsn  7130  4sqlem11  12436  ennnfonelemfun  12471  ennnfonelemf1  12472  mhmima  12958  ghmrn  13213  conjnmz  13235  tgrest  14146  resttopon  14148  rest0  14156  cnrest2r  14214  cnptoprest2  14217  lmss  14223  txbasval  14244  upxp  14249  uptx  14251  hmeores  14292  unirnblps  14399  unirnbl  14400
  Copyright terms: Public domain W3C validator