Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frnd | GIF version |
Description: Deduction form of frn 5356. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
frnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
frnd | ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | frn 5356 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3121 ran crn 4612 ⟶wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-f 5202 |
This theorem is referenced by: difinfsn 7077 ennnfonelemfun 12372 ennnfonelemf1 12373 mhmima 12706 tgrest 12963 resttopon 12965 rest0 12973 cnrest2r 13031 cnptoprest2 13034 lmss 13040 txbasval 13061 upxp 13066 uptx 13068 hmeores 13109 unirnblps 13216 unirnbl 13217 |
Copyright terms: Public domain | W3C validator |