![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frnd | GIF version |
Description: Deduction form of frn 5393. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
frnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
frnd | ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | frn 5393 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3144 ran crn 4645 ⟶wf 5231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-f 5239 |
This theorem is referenced by: difinfsn 7130 4sqlem11 12436 ennnfonelemfun 12471 ennnfonelemf1 12472 mhmima 12958 ghmrn 13213 conjnmz 13235 tgrest 14146 resttopon 14148 rest0 14156 cnrest2r 14214 cnptoprest2 14217 lmss 14223 txbasval 14244 upxp 14249 uptx 14251 hmeores 14292 unirnblps 14399 unirnbl 14400 |
Copyright terms: Public domain | W3C validator |