| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frnd | GIF version | ||
| Description: Deduction form of frn 5434. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| frnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| frnd | ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | frn 5434 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3166 ran crn 4676 ⟶wf 5267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-f 5275 |
| This theorem is referenced by: difinfsn 7202 ccatrn 11065 swrdrn 11110 4sqlem11 12724 ennnfonelemfun 12788 ennnfonelemf1 12789 mhmima 13323 ghmrn 13593 conjnmz 13615 tgrest 14641 resttopon 14643 rest0 14651 cnrest2r 14709 cnptoprest2 14712 lmss 14718 txbasval 14739 upxp 14744 uptx 14746 hmeores 14787 unirnblps 14894 unirnbl 14895 lgseisenlem4 15550 |
| Copyright terms: Public domain | W3C validator |