| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frnd | GIF version | ||
| Description: Deduction form of frn 5454. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| frnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| frnd | ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | frn 5454 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3174 ran crn 4694 ⟶wf 5286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-f 5294 |
| This theorem is referenced by: difinfsn 7228 ccatrn 11103 swrdrn 11148 pfxrn 11178 4sqlem11 12839 ennnfonelemfun 12903 ennnfonelemf1 12904 mhmima 13438 ghmrn 13708 conjnmz 13730 tgrest 14756 resttopon 14758 rest0 14766 cnrest2r 14824 cnptoprest2 14827 lmss 14833 txbasval 14854 upxp 14859 uptx 14861 hmeores 14902 unirnblps 15009 unirnbl 15010 lgseisenlem4 15665 uhgredgm 15842 edgupgren 15845 edgumgren 15846 |
| Copyright terms: Public domain | W3C validator |