ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frnd GIF version

Theorem frnd 5420
Description: Deduction form of frn 5419. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
frnd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
frnd (𝜑 → ran 𝐹𝐵)

Proof of Theorem frnd
StepHypRef Expression
1 frnd.1 . 2 (𝜑𝐹:𝐴𝐵)
2 frn 5419 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2syl 14 1 (𝜑 → ran 𝐹𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3157  ran crn 4665  wf 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-f 5263
This theorem is referenced by:  difinfsn  7175  4sqlem11  12597  ennnfonelemfun  12661  ennnfonelemf1  12662  mhmima  13195  ghmrn  13465  conjnmz  13487  tgrest  14513  resttopon  14515  rest0  14523  cnrest2r  14581  cnptoprest2  14584  lmss  14590  txbasval  14611  upxp  14616  uptx  14618  hmeores  14659  unirnblps  14766  unirnbl  14767  lgseisenlem4  15422
  Copyright terms: Public domain W3C validator