Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frnd | GIF version |
Description: Deduction form of frn 5346. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
frnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
frnd | ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | frn 5346 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3116 ran crn 4605 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-f 5192 |
This theorem is referenced by: difinfsn 7065 ennnfonelemfun 12350 ennnfonelemf1 12351 tgrest 12809 resttopon 12811 rest0 12819 cnrest2r 12877 cnptoprest2 12880 lmss 12886 txbasval 12907 upxp 12912 uptx 12914 hmeores 12955 unirnblps 13062 unirnbl 13063 |
Copyright terms: Public domain | W3C validator |