Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frnd | GIF version |
Description: Deduction form of frn 5366. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
frnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
frnd | ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | frn 5366 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3127 ran crn 4621 ⟶wf 5204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-f 5212 |
This theorem is referenced by: difinfsn 7089 ennnfonelemfun 12385 ennnfonelemf1 12386 mhmima 12737 tgrest 13240 resttopon 13242 rest0 13250 cnrest2r 13308 cnptoprest2 13311 lmss 13317 txbasval 13338 upxp 13343 uptx 13345 hmeores 13386 unirnblps 13493 unirnbl 13494 |
Copyright terms: Public domain | W3C validator |