| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frnd | GIF version | ||
| Description: Deduction form of frn 5481. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| frnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| frnd | ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | frn 5481 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3197 ran crn 4719 ⟶wf 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-f 5321 |
| This theorem is referenced by: difinfsn 7263 ccatrn 11139 swrdrn 11184 pfxrn 11214 4sqlem11 12919 ennnfonelemfun 12983 ennnfonelemf1 12984 mhmima 13519 ghmrn 13789 conjnmz 13811 tgrest 14837 resttopon 14839 rest0 14847 cnrest2r 14905 cnptoprest2 14908 lmss 14914 txbasval 14935 upxp 14940 uptx 14942 hmeores 14983 unirnblps 15090 unirnbl 15091 lgseisenlem4 15746 uhgredgm 15928 upgredgssen 15931 umgredgssen 15932 edgupgren 15933 edgumgren 15934 |
| Copyright terms: Public domain | W3C validator |