ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frnd GIF version

Theorem frnd 5434
Description: Deduction form of frn 5433. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
frnd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
frnd (𝜑 → ran 𝐹𝐵)

Proof of Theorem frnd
StepHypRef Expression
1 frnd.1 . 2 (𝜑𝐹:𝐴𝐵)
2 frn 5433 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2syl 14 1 (𝜑 → ran 𝐹𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3165  ran crn 4675  wf 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-f 5274
This theorem is referenced by:  difinfsn  7201  ccatrn  11063  4sqlem11  12695  ennnfonelemfun  12759  ennnfonelemf1  12760  mhmima  13294  ghmrn  13564  conjnmz  13586  tgrest  14612  resttopon  14614  rest0  14622  cnrest2r  14680  cnptoprest2  14683  lmss  14689  txbasval  14710  upxp  14715  uptx  14717  hmeores  14758  unirnblps  14865  unirnbl  14866  lgseisenlem4  15521
  Copyright terms: Public domain W3C validator