ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngringd Unicode version

Theorem crngringd 13256
Description: A commutative ring is a ring. (Contributed by SN, 16-May-2024.)
Hypothesis
Ref Expression
crngringd.1  |-  ( ph  ->  R  e.  CRing )
Assertion
Ref Expression
crngringd  |-  ( ph  ->  R  e.  Ring )

Proof of Theorem crngringd
StepHypRef Expression
1 crngringd.1 . 2  |-  ( ph  ->  R  e.  CRing )
2 crngring 13255 . 2  |-  ( R  e.  CRing  ->  R  e.  Ring )
31, 2syl 14 1  |-  ( ph  ->  R  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2158   Ringcrg 13243   CRingccrg 13244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471  df-rab 2474  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-iota 5190  df-fv 5236  df-cring 13246
This theorem is referenced by:  crnggrpd  13257  unitmulclb  13357  rdivmuldivd  13387
  Copyright terms: Public domain W3C validator