ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngringd Unicode version

Theorem crngringd 13771
Description: A commutative ring is a ring. (Contributed by SN, 16-May-2024.)
Hypothesis
Ref Expression
crngringd.1  |-  ( ph  ->  R  e.  CRing )
Assertion
Ref Expression
crngringd  |-  ( ph  ->  R  e.  Ring )

Proof of Theorem crngringd
StepHypRef Expression
1 crngringd.1 . 2  |-  ( ph  ->  R  e.  CRing )
2 crngring 13770 . 2  |-  ( R  e.  CRing  ->  R  e.  Ring )
31, 2syl 14 1  |-  ( ph  ->  R  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   Ringcrg 13758   CRingccrg 13759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-cring 13761
This theorem is referenced by:  crnggrpd  13772  unitmulclb  13876  rdivmuldivd  13906  idomringd  14041  znrrg  14422  lgseisenlem4  15550
  Copyright terms: Public domain W3C validator