ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngringd Unicode version

Theorem crngringd 13972
Description: A commutative ring is a ring. (Contributed by SN, 16-May-2024.)
Hypothesis
Ref Expression
crngringd.1  |-  ( ph  ->  R  e.  CRing )
Assertion
Ref Expression
crngringd  |-  ( ph  ->  R  e.  Ring )

Proof of Theorem crngringd
StepHypRef Expression
1 crngringd.1 . 2  |-  ( ph  ->  R  e.  CRing )
2 crngring 13971 . 2  |-  ( R  e.  CRing  ->  R  e.  Ring )
31, 2syl 14 1  |-  ( ph  ->  R  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   Ringcrg 13959   CRingccrg 13960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-cring 13962
This theorem is referenced by:  crnggrpd  13973  unitmulclb  14078  rdivmuldivd  14108  idomringd  14243  znrrg  14624  lgseisenlem4  15752
  Copyright terms: Public domain W3C validator