Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  fnmptd Unicode version

Theorem fnmptd 13839
Description: The maps-to notation defines a function with domain (deduction form). (Contributed by BJ, 5-Aug-2024.)
Hypotheses
Ref Expression
fnmptd.def  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
fnmptd.ex  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
Assertion
Ref Expression
fnmptd  |-  ( ph  ->  F  Fn  A )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fnmptd
StepHypRef Expression
1 fnmptd.ex . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
21ralrimiva 2543 . . 3  |-  ( ph  ->  A. x  e.  A  B  e.  V )
3 eqid 2170 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
43fnmpt 5324 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  Fn  A )
52, 4syl 14 . 2  |-  ( ph  ->  ( x  e.  A  |->  B )  Fn  A
)
6 fnmptd.def . . 3  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
76fneq1d 5288 . 2  |-  ( ph  ->  ( F  Fn  A  <->  ( x  e.  A  |->  B )  Fn  A ) )
85, 7mpbird 166 1  |-  ( ph  ->  F  Fn  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448    |-> cmpt 4050    Fn wfn 5193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-fun 5200  df-fn 5201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator