Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  fnmptd Unicode version

Theorem fnmptd 15296
Description: The maps-to notation defines a function with domain (deduction form). (Contributed by BJ, 5-Aug-2024.)
Hypotheses
Ref Expression
fnmptd.def  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
fnmptd.ex  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
Assertion
Ref Expression
fnmptd  |-  ( ph  ->  F  Fn  A )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fnmptd
StepHypRef Expression
1 fnmptd.ex . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
21ralrimiva 2567 . . 3  |-  ( ph  ->  A. x  e.  A  B  e.  V )
3 eqid 2193 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
43fnmpt 5380 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  Fn  A )
52, 4syl 14 . 2  |-  ( ph  ->  ( x  e.  A  |->  B )  Fn  A
)
6 fnmptd.def . . 3  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
76fneq1d 5344 . 2  |-  ( ph  ->  ( F  Fn  A  <->  ( x  e.  A  |->  B )  Fn  A ) )
85, 7mpbird 167 1  |-  ( ph  ->  F  Fn  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472    |-> cmpt 4090    Fn wfn 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-fun 5256  df-fn 5257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator