Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  fnmptd Unicode version

Theorem fnmptd 13686
Description: The maps-to notation defines a function with domain (deduction form). (Contributed by BJ, 5-Aug-2024.)
Hypotheses
Ref Expression
fnmptd.def  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
fnmptd.ex  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
Assertion
Ref Expression
fnmptd  |-  ( ph  ->  F  Fn  A )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fnmptd
StepHypRef Expression
1 fnmptd.ex . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
21ralrimiva 2539 . . 3  |-  ( ph  ->  A. x  e.  A  B  e.  V )
3 eqid 2165 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
43fnmpt 5314 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  Fn  A )
52, 4syl 14 . 2  |-  ( ph  ->  ( x  e.  A  |->  B )  Fn  A
)
6 fnmptd.def . . 3  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
76fneq1d 5278 . 2  |-  ( ph  ->  ( F  Fn  A  <->  ( x  e.  A  |->  B )  Fn  A ) )
85, 7mpbird 166 1  |-  ( ph  ->  F  Fn  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444    |-> cmpt 4043    Fn wfn 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-fun 5190  df-fn 5191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator