| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifexd | GIF version | ||
| Description: Existence of a conditional class (deduction form). (Contributed by BJ, 15-Aug-2024.) |
| Ref | Expression |
|---|---|
| ifexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ifexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| ifexd | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifexd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | ifexd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | 1, 2 | ifelpwund 4530 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) |
| 4 | 3 | elexd 2785 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 Vcvv 2772 ∪ cun 3164 ifcif 3571 𝒫 cpw 3616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 |
| This theorem is referenced by: ifexg 4533 ccatlen 11054 ccatvalfn 11060 swrdval 11104 pfxval 11130 gsumfzval 13256 vtxvalg 15648 iedgvalg 15649 edgvalg 15687 |
| Copyright terms: Public domain | W3C validator |