| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifexd | GIF version | ||
| Description: Existence of a conditional class (deduction form). (Contributed by BJ, 15-Aug-2024.) |
| Ref | Expression |
|---|---|
| ifexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ifexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| ifexd | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifexd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | ifexd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | 1, 2 | ifelpwund 4550 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) |
| 4 | 3 | elexd 2793 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 Vcvv 2779 ∪ cun 3175 ifcif 3582 𝒫 cpw 3629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-uni 3868 |
| This theorem is referenced by: ifexg 4553 ccatlen 11096 ccatvalfn 11102 swrdval 11146 pfxval 11172 fnpfx 11175 gsumfzval 13390 vtxvalg 15782 iedgvalg 15783 vtxex 15784 iedgex 15785 edgvalg 15825 |
| Copyright terms: Public domain | W3C validator |