| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexd | Unicode version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elexd.1 |
|
| Ref | Expression |
|---|---|
| elexd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elexd.1 |
. 2
| |
| 2 | elex 2783 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: ifexd 4531 dmmptd 5406 tfr1onlemsucfn 6426 tfrcllemsucfn 6439 frecrdg 6494 unsnfidcel 7018 fnfi 7038 caseinl 7193 caseinr 7194 omniwomnimkv 7269 nninfdcinf 7273 acfun 7319 seq3val 10605 seqvalcd 10606 seqf1oglem2 10665 seqf1og 10666 hashennn 10925 wrdexg 11005 swrdspsleq 11120 lcmval 12385 hashdvds 12543 ennnfonelemp1 12777 isstruct2r 12843 strnfvnd 12852 strfvssn 12854 strslfv2d 12875 setsslid 12883 basmex 12891 basmexd 12892 ressbas2d 12900 ressval3d 12904 prdsex 13101 prdsval 13105 prdsbaslemss 13106 imasival 13138 imasbas 13139 imasplusg 13140 imasmulr 13141 imasaddfn 13149 imasaddval 13150 imasaddf 13151 imasmulfn 13152 imasmulval 13153 imasmulf 13154 qusval 13155 qusaddflemg 13166 qusaddval 13167 qusaddf 13168 qusmulval 13169 qusmulf 13170 xpsfrnel 13176 xpsval 13184 ismgmn0 13190 igsumvalx 13221 gsumfzval 13223 gsumval2 13229 prdssgrpd 13247 ress0g 13275 prdsidlem 13279 prdsmndd 13280 prds0g 13281 ismhm 13293 mhmex 13294 0mhm 13318 prdsgrpd 13441 prdsinvgd 13442 qusgrp2 13449 mulgval 13458 mulgfng 13460 mulg1 13465 mulgnnp1 13466 mulgnndir 13487 issubg2m 13525 1nsgtrivd 13555 eqgval 13559 eqgen 13563 rngpropd 13717 qusrng 13720 issrg 13727 ringidss 13791 ringpropd 13800 qusring2 13828 dvdsrvald 13855 dvdsrd 13856 isunitd 13868 invrfvald 13884 dvrfvald 13895 rdivmuldivd 13906 invrpropdg 13911 isrim0 13923 rhmunitinv 13940 subrgintm 14005 rrgmex 14023 aprval 14044 lssmex 14117 islss3 14141 sraval 14199 sralemg 14200 srascag 14204 sravscag 14205 sraipg 14206 sraex 14208 lidlmex 14237 lidlrsppropdg 14257 2idlmex 14263 qusrhm 14290 zrhval 14379 psrval 14428 psrbasg 14436 psrplusgg 14440 psraddcl 14442 psr0cl 14443 psr0lid 14444 psrnegcl 14445 psrlinv 14446 psrgrp 14447 psr1clfi 14450 mplsubgfilemcl 14461 istopon 14485 istps 14504 tgclb 14537 restbasg 14640 restco 14646 lmfval 14664 cnfval 14666 cnpfval 14667 cnpval 14670 txcnp 14743 txrest 14748 ismet2 14826 xmetpsmet 14841 mopnval 14914 comet 14971 reldvg 15151 dvmptclx 15190 lgseisenlem2 15548 1vgrex 15617 |
| Copyright terms: Public domain | W3C validator |