| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexd | Unicode version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elexd.1 |
|
| Ref | Expression |
|---|---|
| elexd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elexd.1 |
. 2
| |
| 2 | elex 2811 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: ifexd 4575 dmmptd 5454 tfr1onlemsucfn 6486 tfrcllemsucfn 6499 frecrdg 6554 unsnfidcel 7083 fnfi 7103 caseinl 7258 caseinr 7259 omniwomnimkv 7334 nninfdcinf 7338 acfun 7389 seq3val 10682 seqvalcd 10683 seqf1oglem2 10742 seqf1og 10743 hashennn 11002 wrdexg 11082 lswex 11123 swrdspsleq 11199 cats1un 11253 cats1fvd 11298 s3fv0g 11323 s3fv1g 11324 lcmval 12585 hashdvds 12743 ennnfonelemp1 12977 isstruct2r 13043 strnfvnd 13052 strfvssn 13054 strslfv2d 13075 setsslid 13083 basmex 13092 basmexd 13093 ressbas2d 13101 ressval3d 13105 prdsex 13302 prdsval 13306 prdsbaslemss 13307 imasival 13339 imasbas 13340 imasplusg 13341 imasmulr 13342 imasaddfn 13350 imasaddval 13351 imasaddf 13352 imasmulfn 13353 imasmulval 13354 imasmulf 13355 qusval 13356 qusaddflemg 13367 qusaddval 13368 qusaddf 13369 qusmulval 13370 qusmulf 13371 xpsfrnel 13377 xpsval 13385 ismgmn0 13391 igsumvalx 13422 gsumfzval 13424 gsumval2 13430 prdssgrpd 13448 ress0g 13476 prdsidlem 13480 prdsmndd 13481 prds0g 13482 ismhm 13494 mhmex 13495 0mhm 13519 prdsgrpd 13642 prdsinvgd 13643 qusgrp2 13650 mulgval 13659 mulgfng 13661 mulg1 13666 mulgnnp1 13667 mulgnndir 13688 issubg2m 13726 1nsgtrivd 13756 eqgval 13760 eqgen 13764 rngpropd 13918 qusrng 13921 issrg 13928 ringidss 13992 ringpropd 14001 qusring2 14029 dvdsrvald 14057 dvdsrd 14058 isunitd 14070 invrfvald 14086 dvrfvald 14097 rdivmuldivd 14108 invrpropdg 14113 isrim0 14125 rhmunitinv 14142 subrgintm 14207 rrgmex 14225 aprval 14246 lssmex 14319 islss3 14343 sraval 14401 sralemg 14402 srascag 14406 sravscag 14407 sraipg 14408 sraex 14410 lidlmex 14439 lidlrsppropdg 14459 2idlmex 14465 qusrhm 14492 zrhval 14581 psrval 14630 psrbasg 14638 psrplusgg 14642 psraddcl 14644 psr0cl 14645 psr0lid 14646 psrnegcl 14647 psrlinv 14648 psrgrp 14649 psr1clfi 14652 mplsubgfilemcl 14663 istopon 14687 istps 14706 tgclb 14739 restbasg 14842 restco 14848 lmfval 14867 cnfval 14868 cnpfval 14869 cnpval 14872 txcnp 14945 txrest 14950 ismet2 15028 xmetpsmet 15043 mopnval 15116 comet 15173 reldvg 15353 dvmptclx 15392 lgseisenlem2 15750 1vgrex 15821 upgriswlkdc 16071 |
| Copyright terms: Public domain | W3C validator |