ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elexd Unicode version

Theorem elexd 2670
Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
elexd.1  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
elexd  |-  ( ph  ->  A  e.  _V )

Proof of Theorem elexd
StepHypRef Expression
1 elexd.1 . 2  |-  ( ph  ->  A  e.  V )
2 elex 2668 . 2  |-  ( A  e.  V  ->  A  e.  _V )
31, 2syl 14 1  |-  ( ph  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1463   _Vcvv 2657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-v 2659
This theorem is referenced by:  dmmptd  5211  tfr1onlemsucfn  6191  tfrcllemsucfn  6204  frecrdg  6259  unsnfidcel  6762  fnfi  6777  caseinl  6928  caseinr  6929  acfun  7011  seq3val  10121  seqvalcd  10122  hashennn  10416  lcmval  11587  hashdvds  11739  ennnfonelemp1  11761  isstruct2r  11810  strnfvnd  11819  strfvssn  11821  strslfv2d  11841  setsslid  11849  ressid2  11858  ressval2  11859  istopon  12020  istps  12039  tgclb  12074  restbasg  12177  restco  12183  lmfval  12201  cnfval  12203  cnpfval  12204  cnpval  12206  txcnp  12279  txrest  12284  ismet2  12340  xmetpsmet  12355  mopnval  12428  comet  12485  reldvg  12600
  Copyright terms: Public domain W3C validator