| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexd | Unicode version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elexd.1 |
|
| Ref | Expression |
|---|---|
| elexd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elexd.1 |
. 2
| |
| 2 | elex 2788 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: ifexd 4549 dmmptd 5426 tfr1onlemsucfn 6449 tfrcllemsucfn 6462 frecrdg 6517 unsnfidcel 7044 fnfi 7064 caseinl 7219 caseinr 7220 omniwomnimkv 7295 nninfdcinf 7299 acfun 7350 seq3val 10642 seqvalcd 10643 seqf1oglem2 10702 seqf1og 10703 hashennn 10962 wrdexg 11042 lswex 11082 swrdspsleq 11158 cats1un 11212 lcmval 12500 hashdvds 12658 ennnfonelemp1 12892 isstruct2r 12958 strnfvnd 12967 strfvssn 12969 strslfv2d 12990 setsslid 12998 basmex 13006 basmexd 13007 ressbas2d 13015 ressval3d 13019 prdsex 13216 prdsval 13220 prdsbaslemss 13221 imasival 13253 imasbas 13254 imasplusg 13255 imasmulr 13256 imasaddfn 13264 imasaddval 13265 imasaddf 13266 imasmulfn 13267 imasmulval 13268 imasmulf 13269 qusval 13270 qusaddflemg 13281 qusaddval 13282 qusaddf 13283 qusmulval 13284 qusmulf 13285 xpsfrnel 13291 xpsval 13299 ismgmn0 13305 igsumvalx 13336 gsumfzval 13338 gsumval2 13344 prdssgrpd 13362 ress0g 13390 prdsidlem 13394 prdsmndd 13395 prds0g 13396 ismhm 13408 mhmex 13409 0mhm 13433 prdsgrpd 13556 prdsinvgd 13557 qusgrp2 13564 mulgval 13573 mulgfng 13575 mulg1 13580 mulgnnp1 13581 mulgnndir 13602 issubg2m 13640 1nsgtrivd 13670 eqgval 13674 eqgen 13678 rngpropd 13832 qusrng 13835 issrg 13842 ringidss 13906 ringpropd 13915 qusring2 13943 dvdsrvald 13970 dvdsrd 13971 isunitd 13983 invrfvald 13999 dvrfvald 14010 rdivmuldivd 14021 invrpropdg 14026 isrim0 14038 rhmunitinv 14055 subrgintm 14120 rrgmex 14138 aprval 14159 lssmex 14232 islss3 14256 sraval 14314 sralemg 14315 srascag 14319 sravscag 14320 sraipg 14321 sraex 14323 lidlmex 14352 lidlrsppropdg 14372 2idlmex 14378 qusrhm 14405 zrhval 14494 psrval 14543 psrbasg 14551 psrplusgg 14555 psraddcl 14557 psr0cl 14558 psr0lid 14559 psrnegcl 14560 psrlinv 14561 psrgrp 14562 psr1clfi 14565 mplsubgfilemcl 14576 istopon 14600 istps 14619 tgclb 14652 restbasg 14755 restco 14761 lmfval 14779 cnfval 14781 cnpfval 14782 cnpval 14785 txcnp 14858 txrest 14863 ismet2 14941 xmetpsmet 14956 mopnval 15029 comet 15086 reldvg 15266 dvmptclx 15305 lgseisenlem2 15663 1vgrex 15734 |
| Copyright terms: Public domain | W3C validator |