![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elexd | Unicode version |
Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elexd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elexd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elexd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | elex 2771 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: ifexd 4515 dmmptd 5384 tfr1onlemsucfn 6393 tfrcllemsucfn 6406 frecrdg 6461 unsnfidcel 6977 fnfi 6995 caseinl 7150 caseinr 7151 omniwomnimkv 7226 nninfdcinf 7230 acfun 7267 seq3val 10531 seqvalcd 10532 seqf1oglem2 10591 seqf1og 10592 hashennn 10851 wrdexg 10925 lcmval 12201 hashdvds 12359 ennnfonelemp1 12563 isstruct2r 12629 strnfvnd 12638 strfvssn 12640 strslfv2d 12661 setsslid 12669 basmex 12677 basmexd 12678 ressbas2d 12686 ressval3d 12690 prdsex 12880 imasival 12889 imasbas 12890 imasplusg 12891 imasmulr 12892 imasaddfn 12900 imasaddval 12901 imasaddf 12902 imasmulfn 12903 imasmulval 12904 imasmulf 12905 qusval 12906 qusaddflemg 12917 qusaddval 12918 qusaddf 12919 qusmulval 12920 qusmulf 12921 xpsfrnel 12927 xpsval 12935 ismgmn0 12941 igsumvalx 12972 gsumfzval 12974 gsumval2 12980 ress0g 13024 ismhm 13033 mhmex 13034 0mhm 13058 qusgrp2 13183 mulgval 13192 mulgfng 13194 mulg1 13199 mulgnnp1 13200 mulgnndir 13221 issubg2m 13259 1nsgtrivd 13289 eqgval 13293 eqgen 13297 rngpropd 13451 qusrng 13454 issrg 13461 ringidss 13525 ringpropd 13534 qusring2 13562 dvdsrvald 13589 dvdsrd 13590 isunitd 13602 invrfvald 13618 dvrfvald 13629 rdivmuldivd 13640 invrpropdg 13645 isrim0 13657 rhmunitinv 13674 subrgintm 13739 rrgmex 13757 aprval 13778 lssmex 13851 islss3 13875 sraval 13933 sralemg 13934 srascag 13938 sravscag 13939 sraipg 13940 sraex 13942 lidlmex 13971 lidlrsppropdg 13991 2idlmex 13997 qusrhm 14024 zrhval 14105 psrval 14152 psrbasg 14159 psrplusgg 14162 psraddcl 14164 istopon 14181 istps 14200 tgclb 14233 restbasg 14336 restco 14342 lmfval 14360 cnfval 14362 cnpfval 14363 cnpval 14366 txcnp 14439 txrest 14444 ismet2 14522 xmetpsmet 14537 mopnval 14610 comet 14667 reldvg 14833 dvmptclx 14865 lgseisenlem2 15187 |
Copyright terms: Public domain | W3C validator |