![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elexd | Unicode version |
Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elexd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elexd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elexd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | elex 2750 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2741 |
This theorem is referenced by: ifexd 4486 dmmptd 5348 tfr1onlemsucfn 6343 tfrcllemsucfn 6356 frecrdg 6411 unsnfidcel 6922 fnfi 6938 caseinl 7092 caseinr 7093 omniwomnimkv 7167 nninfdcinf 7171 acfun 7208 seq3val 10460 seqvalcd 10461 hashennn 10762 lcmval 12065 hashdvds 12223 ennnfonelemp1 12409 isstruct2r 12475 strnfvnd 12484 strfvssn 12486 strslfv2d 12507 setsslid 12515 basmex 12523 basmexd 12524 ressbas2d 12530 ressval3d 12533 prdsex 12723 imasival 12732 imasbas 12733 imasplusg 12734 imasmulr 12735 imasaddfn 12743 imasaddval 12744 imasaddf 12745 imasmulfn 12746 imasmulval 12747 imasmulf 12748 qusval 12749 qusaddflemg 12758 qusaddval 12759 qusaddf 12760 qusmulval 12761 qusmulf 12762 xpsfrnel 12768 xpsval 12776 ismgmn0 12782 ress0g 12849 ismhm 12858 0mhm 12878 mulgval 12991 mulgfng 12992 mulg1 12995 mulgnnp1 12996 mulgnndir 13017 issubg2m 13054 1nsgtrivd 13084 eqgval 13087 eqgen 13091 issrg 13153 ringidss 13217 ringpropd 13222 dvdsrvald 13267 dvdsrd 13268 isunitd 13280 invrfvald 13296 dvrfvald 13307 rdivmuldivd 13318 invrpropdg 13323 subrgintm 13369 aprval 13377 islss3 13471 istopon 13552 istps 13571 tgclb 13604 restbasg 13707 restco 13713 lmfval 13731 cnfval 13733 cnpfval 13734 cnpval 13737 txcnp 13810 txrest 13815 ismet2 13893 xmetpsmet 13908 mopnval 13981 comet 14038 reldvg 14187 dvmptclx 14219 lgseisenlem2 14490 |
Copyright terms: Public domain | W3C validator |