| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexd | Unicode version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elexd.1 |
|
| Ref | Expression |
|---|---|
| elexd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elexd.1 |
. 2
| |
| 2 | elex 2783 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: ifexd 4532 dmmptd 5408 tfr1onlemsucfn 6428 tfrcllemsucfn 6441 frecrdg 6496 unsnfidcel 7020 fnfi 7040 caseinl 7195 caseinr 7196 omniwomnimkv 7271 nninfdcinf 7275 acfun 7321 seq3val 10607 seqvalcd 10608 seqf1oglem2 10667 seqf1og 10668 hashennn 10927 wrdexg 11007 lswex 11047 swrdspsleq 11123 lcmval 12418 hashdvds 12576 ennnfonelemp1 12810 isstruct2r 12876 strnfvnd 12885 strfvssn 12887 strslfv2d 12908 setsslid 12916 basmex 12924 basmexd 12925 ressbas2d 12933 ressval3d 12937 prdsex 13134 prdsval 13138 prdsbaslemss 13139 imasival 13171 imasbas 13172 imasplusg 13173 imasmulr 13174 imasaddfn 13182 imasaddval 13183 imasaddf 13184 imasmulfn 13185 imasmulval 13186 imasmulf 13187 qusval 13188 qusaddflemg 13199 qusaddval 13200 qusaddf 13201 qusmulval 13202 qusmulf 13203 xpsfrnel 13209 xpsval 13217 ismgmn0 13223 igsumvalx 13254 gsumfzval 13256 gsumval2 13262 prdssgrpd 13280 ress0g 13308 prdsidlem 13312 prdsmndd 13313 prds0g 13314 ismhm 13326 mhmex 13327 0mhm 13351 prdsgrpd 13474 prdsinvgd 13475 qusgrp2 13482 mulgval 13491 mulgfng 13493 mulg1 13498 mulgnnp1 13499 mulgnndir 13520 issubg2m 13558 1nsgtrivd 13588 eqgval 13592 eqgen 13596 rngpropd 13750 qusrng 13753 issrg 13760 ringidss 13824 ringpropd 13833 qusring2 13861 dvdsrvald 13888 dvdsrd 13889 isunitd 13901 invrfvald 13917 dvrfvald 13928 rdivmuldivd 13939 invrpropdg 13944 isrim0 13956 rhmunitinv 13973 subrgintm 14038 rrgmex 14056 aprval 14077 lssmex 14150 islss3 14174 sraval 14232 sralemg 14233 srascag 14237 sravscag 14238 sraipg 14239 sraex 14241 lidlmex 14270 lidlrsppropdg 14290 2idlmex 14296 qusrhm 14323 zrhval 14412 psrval 14461 psrbasg 14469 psrplusgg 14473 psraddcl 14475 psr0cl 14476 psr0lid 14477 psrnegcl 14478 psrlinv 14479 psrgrp 14480 psr1clfi 14483 mplsubgfilemcl 14494 istopon 14518 istps 14537 tgclb 14570 restbasg 14673 restco 14679 lmfval 14697 cnfval 14699 cnpfval 14700 cnpval 14703 txcnp 14776 txrest 14781 ismet2 14859 xmetpsmet 14874 mopnval 14947 comet 15004 reldvg 15184 dvmptclx 15223 lgseisenlem2 15581 1vgrex 15650 |
| Copyright terms: Public domain | W3C validator |