ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfinf Unicode version

Theorem nninfinf 10514
Description: is infinte. (Contributed by Jim Kingdon, 8-Jul-2025.)
Assertion
Ref Expression
nninfinf  |-  om  ~<_

Proof of Theorem nninfinf
Dummy variables  i  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnninf 7185 . . . 4  |-  ( n  e.  om  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.
)
21a1i 9 . . 3  |-  ( T. 
->  ( n  e.  om  ->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.
) )
3 1lt2o 6495 . . . . . . . . 9  |-  1o  e.  2o
43a1i 9 . . . . . . . 8  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  ->  1o  e.  2o )
5 0lt2o 6494 . . . . . . . . 9  |-  (/)  e.  2o
65a1i 9 . . . . . . . 8  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  ->  (/)  e.  2o )
7 simpr 110 . . . . . . . . 9  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  ->  i  e.  om )
8 simpll 527 . . . . . . . . 9  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  ->  n  e.  om )
9 nndcel 6553 . . . . . . . . 9  |-  ( ( i  e.  om  /\  n  e.  om )  -> DECID  i  e.  n )
107, 8, 9syl2anc 411 . . . . . . . 8  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  -> DECID 
i  e.  n )
114, 6, 10ifcldcd 3593 . . . . . . 7  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  ->  if ( i  e.  n ,  1o ,  (/) )  e.  2o )
1211ralrimiva 2567 . . . . . 6  |-  ( ( n  e.  om  /\  m  e.  om )  ->  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  e.  2o )
13 mpteqb 5648 . . . . . 6  |-  ( A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  e.  2o  ->  ( (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  m ,  1o ,  (/) ) )  <->  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) ) )
1412, 13syl 14 . . . . 5  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e.  om  |->  if ( i  e.  m ,  1o ,  (/) ) )  <->  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) ) )
15 nfv 1539 . . . . . . . . . 10  |-  F/ i ( n  e.  om  /\  m  e.  om )
16 nfra1 2525 . . . . . . . . . 10  |-  F/ i A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) )
1715, 16nfan 1576 . . . . . . . . 9  |-  F/ i ( ( n  e. 
om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )
18 elnn 4638 . . . . . . . . . . . 12  |-  ( ( i  e.  n  /\  n  e.  om )  ->  i  e.  om )
1918expcom 116 . . . . . . . . . . 11  |-  ( n  e.  om  ->  (
i  e.  n  -> 
i  e.  om )
)
2019ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )  ->  (
i  e.  n  -> 
i  e.  om )
)
21 elnn 4638 . . . . . . . . . . . 12  |-  ( ( i  e.  m  /\  m  e.  om )  ->  i  e.  om )
2221expcom 116 . . . . . . . . . . 11  |-  ( m  e.  om  ->  (
i  e.  m  -> 
i  e.  om )
)
2322ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )  ->  (
i  e.  m  -> 
i  e.  om )
)
24 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  ->  m  e.  om )
25 nndcel 6553 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  om  /\  m  e.  om )  -> DECID  i  e.  m )
267, 24, 25syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  -> DECID 
i  e.  m )
27 1n0 6485 . . . . . . . . . . . . . . 15  |-  1o  =/=  (/)
28 ifnebibdc 3600 . . . . . . . . . . . . . . 15  |-  ( (DECID  i  e.  n  /\ DECID  i  e.  m  /\  1o  =/=  (/) )  -> 
( if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) )  <->  ( i  e.  n  <->  i  e.  m
) ) )
2927, 28mp3an3 1337 . . . . . . . . . . . . . 14  |-  ( (DECID  i  e.  n  /\ DECID  i  e.  m )  ->  ( if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) )  <->  ( i  e.  n  <->  i  e.  m
) ) )
3010, 26, 29syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  ->  ( if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) )  <->  ( i  e.  n  <->  i  e.  m
) ) )
3130ralbidva 2490 . . . . . . . . . . . 12  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( A. i  e. 
om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) )  <->  A. i  e.  om  ( i  e.  n  <->  i  e.  m
) ) )
3231biimpa 296 . . . . . . . . . . 11  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )  ->  A. i  e.  om  ( i  e.  n  <->  i  e.  m
) )
33 rsp 2541 . . . . . . . . . . 11  |-  ( A. i  e.  om  (
i  e.  n  <->  i  e.  m )  ->  (
i  e.  om  ->  ( i  e.  n  <->  i  e.  m ) ) )
3432, 33syl 14 . . . . . . . . . 10  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )  ->  (
i  e.  om  ->  ( i  e.  n  <->  i  e.  m ) ) )
3520, 23, 34pm5.21ndd 706 . . . . . . . . 9  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )  ->  (
i  e.  n  <->  i  e.  m ) )
3617, 35alrimi 1533 . . . . . . . 8  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )  ->  A. i
( i  e.  n  <->  i  e.  m ) )
37 axext4 2177 . . . . . . . 8  |-  ( n  =  m  <->  A. i
( i  e.  n  <->  i  e.  m ) )
3836, 37sylibr 134 . . . . . . 7  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )  ->  n  =  m )
3938ex 115 . . . . . 6  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( A. i  e. 
om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) )  ->  n  =  m )
)
40 elequ2 2169 . . . . . . . 8  |-  ( n  =  m  ->  (
i  e.  n  <->  i  e.  m ) )
4140ifbid 3578 . . . . . . 7  |-  ( n  =  m  ->  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )
4241ralrimivw 2568 . . . . . 6  |-  ( n  =  m  ->  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )
4339, 42impbid1 142 . . . . 5  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( A. i  e. 
om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) )  <->  n  =  m ) )
4414, 43bitrd 188 . . . 4  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e.  om  |->  if ( i  e.  m ,  1o ,  (/) ) )  <-> 
n  =  m ) )
4544a1i 9 . . 3  |-  ( T. 
->  ( ( n  e. 
om  /\  m  e.  om )  ->  ( (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  m ,  1o ,  (/) ) )  <->  n  =  m ) ) )
46 omex 4625 . . . 4  |-  om  e.  _V
4746a1i 9 . . 3  |-  ( T. 
->  om  e.  _V )
48 nninfex 7180 . . . 4  |-  e.  _V
4948a1i 9 . . 3  |-  ( T. 
->  e. 
_V )
502, 45, 47, 49dom3d 6828 . 2  |-  ( T. 
->  om  ~<_ )
5150mptru 1373 1  |-  om  ~<_
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835   A.wal 1362    = wceq 1364   T. wtru 1365    e. wcel 2164    =/= wne 2364   A.wral 2472   _Vcvv 2760   (/)c0 3446   ifcif 3557   class class class wbr 4029    |-> cmpt 4090   omcom 4622   1oc1o 6462   2oc2o 6463    ~<_ cdom 6793  ℕxnninf 7178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-2o 6470  df-map 6704  df-dom 6796  df-nninf 7179
This theorem is referenced by:  nnnninfen  15511
  Copyright terms: Public domain W3C validator