ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfinf Unicode version

Theorem nninfinf 10660
Description: is infinte. (Contributed by Jim Kingdon, 8-Jul-2025.)
Assertion
Ref Expression
nninfinf  |-  om  ~<_

Proof of Theorem nninfinf
Dummy variables  i  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnninf 7289 . . . 4  |-  ( n  e.  om  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.
)
21a1i 9 . . 3  |-  ( T. 
->  ( n  e.  om  ->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.
) )
3 1lt2o 6586 . . . . . . . . 9  |-  1o  e.  2o
43a1i 9 . . . . . . . 8  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  ->  1o  e.  2o )
5 0lt2o 6585 . . . . . . . . 9  |-  (/)  e.  2o
65a1i 9 . . . . . . . 8  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  ->  (/)  e.  2o )
7 simpr 110 . . . . . . . . 9  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  ->  i  e.  om )
8 simpll 527 . . . . . . . . 9  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  ->  n  e.  om )
9 nndcel 6644 . . . . . . . . 9  |-  ( ( i  e.  om  /\  n  e.  om )  -> DECID  i  e.  n )
107, 8, 9syl2anc 411 . . . . . . . 8  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  -> DECID 
i  e.  n )
114, 6, 10ifcldcd 3640 . . . . . . 7  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  ->  if ( i  e.  n ,  1o ,  (/) )  e.  2o )
1211ralrimiva 2603 . . . . . 6  |-  ( ( n  e.  om  /\  m  e.  om )  ->  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  e.  2o )
13 mpteqb 5724 . . . . . 6  |-  ( A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  e.  2o  ->  ( (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  m ,  1o ,  (/) ) )  <->  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) ) )
1412, 13syl 14 . . . . 5  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e.  om  |->  if ( i  e.  m ,  1o ,  (/) ) )  <->  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) ) )
15 nfv 1574 . . . . . . . . . 10  |-  F/ i ( n  e.  om  /\  m  e.  om )
16 nfra1 2561 . . . . . . . . . 10  |-  F/ i A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) )
1715, 16nfan 1611 . . . . . . . . 9  |-  F/ i ( ( n  e. 
om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )
18 elnn 4697 . . . . . . . . . . . 12  |-  ( ( i  e.  n  /\  n  e.  om )  ->  i  e.  om )
1918expcom 116 . . . . . . . . . . 11  |-  ( n  e.  om  ->  (
i  e.  n  -> 
i  e.  om )
)
2019ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )  ->  (
i  e.  n  -> 
i  e.  om )
)
21 elnn 4697 . . . . . . . . . . . 12  |-  ( ( i  e.  m  /\  m  e.  om )  ->  i  e.  om )
2221expcom 116 . . . . . . . . . . 11  |-  ( m  e.  om  ->  (
i  e.  m  -> 
i  e.  om )
)
2322ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )  ->  (
i  e.  m  -> 
i  e.  om )
)
24 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  ->  m  e.  om )
25 nndcel 6644 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  om  /\  m  e.  om )  -> DECID  i  e.  m )
267, 24, 25syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  -> DECID 
i  e.  m )
27 1n0 6576 . . . . . . . . . . . . . . 15  |-  1o  =/=  (/)
28 ifnebibdc 3648 . . . . . . . . . . . . . . 15  |-  ( (DECID  i  e.  n  /\ DECID  i  e.  m  /\  1o  =/=  (/) )  -> 
( if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) )  <->  ( i  e.  n  <->  i  e.  m
) ) )
2927, 28mp3an3 1360 . . . . . . . . . . . . . 14  |-  ( (DECID  i  e.  n  /\ DECID  i  e.  m )  ->  ( if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) )  <->  ( i  e.  n  <->  i  e.  m
) ) )
3010, 26, 29syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  i  e.  om )  ->  ( if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) )  <->  ( i  e.  n  <->  i  e.  m
) ) )
3130ralbidva 2526 . . . . . . . . . . . 12  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( A. i  e. 
om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) )  <->  A. i  e.  om  ( i  e.  n  <->  i  e.  m
) ) )
3231biimpa 296 . . . . . . . . . . 11  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )  ->  A. i  e.  om  ( i  e.  n  <->  i  e.  m
) )
33 rsp 2577 . . . . . . . . . . 11  |-  ( A. i  e.  om  (
i  e.  n  <->  i  e.  m )  ->  (
i  e.  om  ->  ( i  e.  n  <->  i  e.  m ) ) )
3432, 33syl 14 . . . . . . . . . 10  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )  ->  (
i  e.  om  ->  ( i  e.  n  <->  i  e.  m ) ) )
3520, 23, 34pm5.21ndd 710 . . . . . . . . 9  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )  ->  (
i  e.  n  <->  i  e.  m ) )
3617, 35alrimi 1568 . . . . . . . 8  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )  ->  A. i
( i  e.  n  <->  i  e.  m ) )
37 axext4 2213 . . . . . . . 8  |-  ( n  =  m  <->  A. i
( i  e.  n  <->  i  e.  m ) )
3836, 37sylibr 134 . . . . . . 7  |-  ( ( ( n  e.  om  /\  m  e.  om )  /\  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )  ->  n  =  m )
3938ex 115 . . . . . 6  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( A. i  e. 
om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) )  ->  n  =  m )
)
40 elequ2 2205 . . . . . . . 8  |-  ( n  =  m  ->  (
i  e.  n  <->  i  e.  m ) )
4140ifbid 3624 . . . . . . 7  |-  ( n  =  m  ->  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )
4241ralrimivw 2604 . . . . . 6  |-  ( n  =  m  ->  A. i  e.  om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) ) )
4339, 42impbid1 142 . . . . 5  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( A. i  e. 
om  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  m ,  1o ,  (/) )  <->  n  =  m ) )
4414, 43bitrd 188 . . . 4  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e.  om  |->  if ( i  e.  m ,  1o ,  (/) ) )  <-> 
n  =  m ) )
4544a1i 9 . . 3  |-  ( T. 
->  ( ( n  e. 
om  /\  m  e.  om )  ->  ( (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  m ,  1o ,  (/) ) )  <->  n  =  m ) ) )
46 omex 4684 . . . 4  |-  om  e.  _V
4746a1i 9 . . 3  |-  ( T. 
->  om  e.  _V )
48 nninfex 7284 . . . 4  |-  e.  _V
4948a1i 9 . . 3  |-  ( T. 
->  e. 
_V )
502, 45, 47, 49dom3d 6923 . 2  |-  ( T. 
->  om  ~<_ )
5150mptru 1404 1  |-  om  ~<_
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839   A.wal 1393    = wceq 1395   T. wtru 1396    e. wcel 2200    =/= wne 2400   A.wral 2508   _Vcvv 2799   (/)c0 3491   ifcif 3602   class class class wbr 4082    |-> cmpt 4144   omcom 4681   1oc1o 6553   2oc2o 6554    ~<_ cdom 6884  ℕxnninf 7282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1o 6560  df-2o 6561  df-map 6795  df-dom 6887  df-nninf 7283
This theorem is referenced by:  nnnninfen  16346
  Copyright terms: Public domain W3C validator