ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efltlemlt Unicode version

Theorem efltlemlt 13034
Description: Lemma for eflt 13035. The converse of efltim 11572 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.)
Hypotheses
Ref Expression
efltlemlt.a  |-  ( ph  ->  A  e.  RR )
efltlemlt.b  |-  ( ph  ->  B  e.  RR )
efltlemlt.lt  |-  ( ph  ->  ( exp `  A
)  <  ( exp `  B ) )
efltlemlt.d  |-  ( ph  ->  D  e.  RR+ )
efltlemlt.ed  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B
) ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) ) )
Assertion
Ref Expression
efltlemlt  |-  ( ph  ->  A  <  B )

Proof of Theorem efltlemlt
StepHypRef Expression
1 efltlemlt.lt . . . . 5  |-  ( ph  ->  ( exp `  A
)  <  ( exp `  B ) )
21ad2antrr 480 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  A )  < 
( exp `  B
) )
3 efltlemlt.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
43ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  B  e.  RR )
54reefcld 11543 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  B )  e.  RR )
6 efltlemlt.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
76ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  A  e.  RR )
87reefcld 11543 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  A )  e.  RR )
96adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  A  e.  RR )
10 efltim 11572 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  ->  ( exp `  B
)  <  ( exp `  A ) ) )
113, 9, 10syl2an2r 585 . . . . . 6  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  ( B  <  A  ->  ( exp `  B )  <  ( exp `  A ) ) )
1211imp 123 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  B )  < 
( exp `  A
) )
135, 8, 12ltnsymd 7974 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  -.  ( exp `  A )  <  ( exp `  B
) )
142, 13pm2.21dd 610 . . 3  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  A  <  B )
156reefcld 11543 . . . . . . 7  |-  ( ph  ->  ( exp `  A
)  e.  RR )
163reefcld 11543 . . . . . . 7  |-  ( ph  ->  ( exp `  B
)  e.  RR )
1715, 16, 1ltled 7973 . . . . . . 7  |-  ( ph  ->  ( exp `  A
)  <_  ( exp `  B ) )
1815, 16, 17abssuble0d 11054 . . . . . 6  |-  ( ph  ->  ( abs `  (
( exp `  A
)  -  ( exp `  B ) ) )  =  ( ( exp `  B )  -  ( exp `  A ) ) )
1918ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B ) ) )  =  ( ( exp `  B )  -  ( exp `  A
) ) )
20 efltlemlt.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  RR+ )
2120rpred 9581 . . . . . . . . 9  |-  ( ph  ->  D  e.  RR )
226, 3, 21absdifltd 11055 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  <  D  <->  ( ( B  -  D )  <  A  /\  A  < 
( B  +  D
) ) ) )
2322biimprd 157 . . . . . . 7  |-  ( ph  ->  ( ( ( B  -  D )  < 
A  /\  A  <  ( B  +  D ) )  ->  ( abs `  ( A  -  B
) )  <  D
) )
2423impl 378 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  ( abs `  ( A  -  B ) )  < 
D )
25 efltlemlt.ed . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B
) ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) ) )
2625ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  (
( abs `  ( A  -  B )
)  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B
) ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) ) )
2724, 26mpd 13 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A
) ) )
2819, 27eqbrtrrd 3984 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  (
( exp `  B
)  -  ( exp `  A ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) )
2916, 15resubcld 8235 . . . . . 6  |-  ( ph  ->  ( ( exp `  B
)  -  ( exp `  A ) )  e.  RR )
3029ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  (
( exp `  B
)  -  ( exp `  A ) )  e.  RR )
3130ltnrd 7967 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  -.  ( ( exp `  B
)  -  ( exp `  A ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) )
3228, 31pm2.21dd 610 . . 3  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  A  <  B )
333, 20ltaddrpd 9615 . . . . 5  |-  ( ph  ->  B  <  ( B  +  D ) )
343, 21readdcld 7886 . . . . . 6  |-  ( ph  ->  ( B  +  D
)  e.  RR )
35 axltwlin 7924 . . . . . 6  |-  ( ( B  e.  RR  /\  ( B  +  D
)  e.  RR  /\  A  e.  RR )  ->  ( B  <  ( B  +  D )  ->  ( B  <  A  \/  A  <  ( B  +  D ) ) ) )
363, 34, 6, 35syl3anc 1217 . . . . 5  |-  ( ph  ->  ( B  <  ( B  +  D )  ->  ( B  <  A  \/  A  <  ( B  +  D ) ) ) )
3733, 36mpd 13 . . . 4  |-  ( ph  ->  ( B  <  A  \/  A  <  ( B  +  D ) ) )
3837adantr 274 . . 3  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  ( B  <  A  \/  A  < 
( B  +  D
) ) )
3914, 32, 38mpjaodan 788 . 2  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  A  <  B )
40 simpr 109 . 2  |-  ( (
ph  /\  A  <  B )  ->  A  <  B )
413, 20ltsubrpd 9614 . . 3  |-  ( ph  ->  ( B  -  D
)  <  B )
423, 21resubcld 8235 . . . 4  |-  ( ph  ->  ( B  -  D
)  e.  RR )
43 axltwlin 7924 . . . 4  |-  ( ( ( B  -  D
)  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( B  -  D
)  <  B  ->  ( ( B  -  D
)  <  A  \/  A  <  B ) ) )
4442, 3, 6, 43syl3anc 1217 . . 3  |-  ( ph  ->  ( ( B  -  D )  <  B  ->  ( ( B  -  D )  <  A  \/  A  <  B ) ) )
4541, 44mpd 13 . 2  |-  ( ph  ->  ( ( B  -  D )  <  A  \/  A  <  B ) )
4639, 40, 45mpjaodan 788 1  |-  ( ph  ->  A  <  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1332    e. wcel 2125   class class class wbr 3961   ` cfv 5163  (class class class)co 5814   RRcr 7710    + caddc 7714    < clt 7891    - cmin 8025   RR+crp 9538   abscabs 10874   expce 11516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-disj 3939  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-oadd 6357  df-er 6469  df-en 6675  df-dom 6676  df-fin 6677  df-sup 6916  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-ico 9776  df-fz 9891  df-fzo 10020  df-seqfrec 10323  df-exp 10397  df-fac 10577  df-bc 10599  df-ihash 10627  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228  df-ef 11522
This theorem is referenced by:  eflt  13035
  Copyright terms: Public domain W3C validator