ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efltlemlt Unicode version

Theorem efltlemlt 14335
Description: Lemma for eflt 14336. The converse of efltim 11709 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.)
Hypotheses
Ref Expression
efltlemlt.a  |-  ( ph  ->  A  e.  RR )
efltlemlt.b  |-  ( ph  ->  B  e.  RR )
efltlemlt.lt  |-  ( ph  ->  ( exp `  A
)  <  ( exp `  B ) )
efltlemlt.d  |-  ( ph  ->  D  e.  RR+ )
efltlemlt.ed  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B
) ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) ) )
Assertion
Ref Expression
efltlemlt  |-  ( ph  ->  A  <  B )

Proof of Theorem efltlemlt
StepHypRef Expression
1 efltlemlt.lt . . . . 5  |-  ( ph  ->  ( exp `  A
)  <  ( exp `  B ) )
21ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  A )  < 
( exp `  B
) )
3 efltlemlt.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
43ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  B  e.  RR )
54reefcld 11680 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  B )  e.  RR )
6 efltlemlt.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
76ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  A  e.  RR )
87reefcld 11680 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  A )  e.  RR )
96adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  A  e.  RR )
10 efltim 11709 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  ->  ( exp `  B
)  <  ( exp `  A ) ) )
113, 9, 10syl2an2r 595 . . . . . 6  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  ( B  <  A  ->  ( exp `  B )  <  ( exp `  A ) ) )
1211imp 124 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  B )  < 
( exp `  A
) )
135, 8, 12ltnsymd 8080 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  -.  ( exp `  A )  <  ( exp `  B
) )
142, 13pm2.21dd 620 . . 3  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  A  <  B )
156reefcld 11680 . . . . . . 7  |-  ( ph  ->  ( exp `  A
)  e.  RR )
163reefcld 11680 . . . . . . 7  |-  ( ph  ->  ( exp `  B
)  e.  RR )
1715, 16, 1ltled 8079 . . . . . . 7  |-  ( ph  ->  ( exp `  A
)  <_  ( exp `  B ) )
1815, 16, 17abssuble0d 11189 . . . . . 6  |-  ( ph  ->  ( abs `  (
( exp `  A
)  -  ( exp `  B ) ) )  =  ( ( exp `  B )  -  ( exp `  A ) ) )
1918ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B ) ) )  =  ( ( exp `  B )  -  ( exp `  A
) ) )
20 efltlemlt.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  RR+ )
2120rpred 9699 . . . . . . . . 9  |-  ( ph  ->  D  e.  RR )
226, 3, 21absdifltd 11190 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  <  D  <->  ( ( B  -  D )  <  A  /\  A  < 
( B  +  D
) ) ) )
2322biimprd 158 . . . . . . 7  |-  ( ph  ->  ( ( ( B  -  D )  < 
A  /\  A  <  ( B  +  D ) )  ->  ( abs `  ( A  -  B
) )  <  D
) )
2423impl 380 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  ( abs `  ( A  -  B ) )  < 
D )
25 efltlemlt.ed . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B
) ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) ) )
2625ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  (
( abs `  ( A  -  B )
)  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B
) ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) ) )
2724, 26mpd 13 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A
) ) )
2819, 27eqbrtrrd 4029 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  (
( exp `  B
)  -  ( exp `  A ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) )
2916, 15resubcld 8341 . . . . . 6  |-  ( ph  ->  ( ( exp `  B
)  -  ( exp `  A ) )  e.  RR )
3029ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  (
( exp `  B
)  -  ( exp `  A ) )  e.  RR )
3130ltnrd 8072 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  -.  ( ( exp `  B
)  -  ( exp `  A ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) )
3228, 31pm2.21dd 620 . . 3  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  A  <  B )
333, 20ltaddrpd 9733 . . . . 5  |-  ( ph  ->  B  <  ( B  +  D ) )
343, 21readdcld 7990 . . . . . 6  |-  ( ph  ->  ( B  +  D
)  e.  RR )
35 axltwlin 8028 . . . . . 6  |-  ( ( B  e.  RR  /\  ( B  +  D
)  e.  RR  /\  A  e.  RR )  ->  ( B  <  ( B  +  D )  ->  ( B  <  A  \/  A  <  ( B  +  D ) ) ) )
363, 34, 6, 35syl3anc 1238 . . . . 5  |-  ( ph  ->  ( B  <  ( B  +  D )  ->  ( B  <  A  \/  A  <  ( B  +  D ) ) ) )
3733, 36mpd 13 . . . 4  |-  ( ph  ->  ( B  <  A  \/  A  <  ( B  +  D ) ) )
3837adantr 276 . . 3  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  ( B  <  A  \/  A  < 
( B  +  D
) ) )
3914, 32, 38mpjaodan 798 . 2  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  A  <  B )
40 simpr 110 . 2  |-  ( (
ph  /\  A  <  B )  ->  A  <  B )
413, 20ltsubrpd 9732 . . 3  |-  ( ph  ->  ( B  -  D
)  <  B )
423, 21resubcld 8341 . . . 4  |-  ( ph  ->  ( B  -  D
)  e.  RR )
43 axltwlin 8028 . . . 4  |-  ( ( ( B  -  D
)  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( B  -  D
)  <  B  ->  ( ( B  -  D
)  <  A  \/  A  <  B ) ) )
4442, 3, 6, 43syl3anc 1238 . . 3  |-  ( ph  ->  ( ( B  -  D )  <  B  ->  ( ( B  -  D )  <  A  \/  A  <  B ) ) )
4541, 44mpd 13 . 2  |-  ( ph  ->  ( ( B  -  D )  <  A  \/  A  <  B ) )
4639, 40, 45mpjaodan 798 1  |-  ( ph  ->  A  <  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148   class class class wbr 4005   ` cfv 5218  (class class class)co 5878   RRcr 7813    + caddc 7817    < clt 7995    - cmin 8131   RR+crp 9656   abscabs 11009   expce 11653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-disj 3983  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-en 6744  df-dom 6745  df-fin 6746  df-sup 6986  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-ico 9897  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-fac 10709  df-bc 10731  df-ihash 10759  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-sumdc 11365  df-ef 11659
This theorem is referenced by:  eflt  14336
  Copyright terms: Public domain W3C validator