ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efltlemlt Unicode version

Theorem efltlemlt 15361
Description: Lemma for eflt 15362. The converse of efltim 12124 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.)
Hypotheses
Ref Expression
efltlemlt.a  |-  ( ph  ->  A  e.  RR )
efltlemlt.b  |-  ( ph  ->  B  e.  RR )
efltlemlt.lt  |-  ( ph  ->  ( exp `  A
)  <  ( exp `  B ) )
efltlemlt.d  |-  ( ph  ->  D  e.  RR+ )
efltlemlt.ed  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B
) ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) ) )
Assertion
Ref Expression
efltlemlt  |-  ( ph  ->  A  <  B )

Proof of Theorem efltlemlt
StepHypRef Expression
1 efltlemlt.lt . . . . 5  |-  ( ph  ->  ( exp `  A
)  <  ( exp `  B ) )
21ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  A )  < 
( exp `  B
) )
3 efltlemlt.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
43ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  B  e.  RR )
54reefcld 12095 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  B )  e.  RR )
6 efltlemlt.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
76ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  A  e.  RR )
87reefcld 12095 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  A )  e.  RR )
96adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  A  e.  RR )
10 efltim 12124 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  ->  ( exp `  B
)  <  ( exp `  A ) ) )
113, 9, 10syl2an2r 595 . . . . . 6  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  ( B  <  A  ->  ( exp `  B )  <  ( exp `  A ) ) )
1211imp 124 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  B )  < 
( exp `  A
) )
135, 8, 12ltnsymd 8227 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  -.  ( exp `  A )  <  ( exp `  B
) )
142, 13pm2.21dd 621 . . 3  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  A  <  B )
156reefcld 12095 . . . . . . 7  |-  ( ph  ->  ( exp `  A
)  e.  RR )
163reefcld 12095 . . . . . . 7  |-  ( ph  ->  ( exp `  B
)  e.  RR )
1715, 16, 1ltled 8226 . . . . . . 7  |-  ( ph  ->  ( exp `  A
)  <_  ( exp `  B ) )
1815, 16, 17abssuble0d 11603 . . . . . 6  |-  ( ph  ->  ( abs `  (
( exp `  A
)  -  ( exp `  B ) ) )  =  ( ( exp `  B )  -  ( exp `  A ) ) )
1918ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B ) ) )  =  ( ( exp `  B )  -  ( exp `  A
) ) )
20 efltlemlt.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  RR+ )
2120rpred 9853 . . . . . . . . 9  |-  ( ph  ->  D  e.  RR )
226, 3, 21absdifltd 11604 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  <  D  <->  ( ( B  -  D )  <  A  /\  A  < 
( B  +  D
) ) ) )
2322biimprd 158 . . . . . . 7  |-  ( ph  ->  ( ( ( B  -  D )  < 
A  /\  A  <  ( B  +  D ) )  ->  ( abs `  ( A  -  B
) )  <  D
) )
2423impl 380 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  ( abs `  ( A  -  B ) )  < 
D )
25 efltlemlt.ed . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B
) ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) ) )
2625ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  (
( abs `  ( A  -  B )
)  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B
) ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) ) )
2724, 26mpd 13 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A
) ) )
2819, 27eqbrtrrd 4083 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  (
( exp `  B
)  -  ( exp `  A ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) )
2916, 15resubcld 8488 . . . . . 6  |-  ( ph  ->  ( ( exp `  B
)  -  ( exp `  A ) )  e.  RR )
3029ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  (
( exp `  B
)  -  ( exp `  A ) )  e.  RR )
3130ltnrd 8219 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  -.  ( ( exp `  B
)  -  ( exp `  A ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) )
3228, 31pm2.21dd 621 . . 3  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  A  <  B )
333, 20ltaddrpd 9887 . . . . 5  |-  ( ph  ->  B  <  ( B  +  D ) )
343, 21readdcld 8137 . . . . . 6  |-  ( ph  ->  ( B  +  D
)  e.  RR )
35 axltwlin 8175 . . . . . 6  |-  ( ( B  e.  RR  /\  ( B  +  D
)  e.  RR  /\  A  e.  RR )  ->  ( B  <  ( B  +  D )  ->  ( B  <  A  \/  A  <  ( B  +  D ) ) ) )
363, 34, 6, 35syl3anc 1250 . . . . 5  |-  ( ph  ->  ( B  <  ( B  +  D )  ->  ( B  <  A  \/  A  <  ( B  +  D ) ) ) )
3733, 36mpd 13 . . . 4  |-  ( ph  ->  ( B  <  A  \/  A  <  ( B  +  D ) ) )
3837adantr 276 . . 3  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  ( B  <  A  \/  A  < 
( B  +  D
) ) )
3914, 32, 38mpjaodan 800 . 2  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  A  <  B )
40 simpr 110 . 2  |-  ( (
ph  /\  A  <  B )  ->  A  <  B )
413, 20ltsubrpd 9886 . . 3  |-  ( ph  ->  ( B  -  D
)  <  B )
423, 21resubcld 8488 . . . 4  |-  ( ph  ->  ( B  -  D
)  e.  RR )
43 axltwlin 8175 . . . 4  |-  ( ( ( B  -  D
)  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( B  -  D
)  <  B  ->  ( ( B  -  D
)  <  A  \/  A  <  B ) ) )
4442, 3, 6, 43syl3anc 1250 . . 3  |-  ( ph  ->  ( ( B  -  D )  <  B  ->  ( ( B  -  D )  <  A  \/  A  <  B ) ) )
4541, 44mpd 13 . 2  |-  ( ph  ->  ( ( B  -  D )  <  A  \/  A  <  B ) )
4639, 40, 45mpjaodan 800 1  |-  ( ph  ->  A  <  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   RRcr 7959    + caddc 7963    < clt 8142    - cmin 8278   RR+crp 9810   abscabs 11423   expce 12068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-disj 4036  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-ico 10051  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-fac 10908  df-bc 10930  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780  df-ef 12074
This theorem is referenced by:  eflt  15362
  Copyright terms: Public domain W3C validator