ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efltlemlt Unicode version

Theorem efltlemlt 14909
Description: Lemma for eflt 14910. The converse of efltim 11841 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.)
Hypotheses
Ref Expression
efltlemlt.a  |-  ( ph  ->  A  e.  RR )
efltlemlt.b  |-  ( ph  ->  B  e.  RR )
efltlemlt.lt  |-  ( ph  ->  ( exp `  A
)  <  ( exp `  B ) )
efltlemlt.d  |-  ( ph  ->  D  e.  RR+ )
efltlemlt.ed  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B
) ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) ) )
Assertion
Ref Expression
efltlemlt  |-  ( ph  ->  A  <  B )

Proof of Theorem efltlemlt
StepHypRef Expression
1 efltlemlt.lt . . . . 5  |-  ( ph  ->  ( exp `  A
)  <  ( exp `  B ) )
21ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  A )  < 
( exp `  B
) )
3 efltlemlt.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
43ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  B  e.  RR )
54reefcld 11812 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  B )  e.  RR )
6 efltlemlt.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
76ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  A  e.  RR )
87reefcld 11812 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  A )  e.  RR )
96adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  A  e.  RR )
10 efltim 11841 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  ->  ( exp `  B
)  <  ( exp `  A ) ) )
113, 9, 10syl2an2r 595 . . . . . 6  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  ( B  <  A  ->  ( exp `  B )  <  ( exp `  A ) ) )
1211imp 124 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  ( exp `  B )  < 
( exp `  A
) )
135, 8, 12ltnsymd 8139 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  -.  ( exp `  A )  <  ( exp `  B
) )
142, 13pm2.21dd 621 . . 3  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  B  <  A )  ->  A  <  B )
156reefcld 11812 . . . . . . 7  |-  ( ph  ->  ( exp `  A
)  e.  RR )
163reefcld 11812 . . . . . . 7  |-  ( ph  ->  ( exp `  B
)  e.  RR )
1715, 16, 1ltled 8138 . . . . . . 7  |-  ( ph  ->  ( exp `  A
)  <_  ( exp `  B ) )
1815, 16, 17abssuble0d 11321 . . . . . 6  |-  ( ph  ->  ( abs `  (
( exp `  A
)  -  ( exp `  B ) ) )  =  ( ( exp `  B )  -  ( exp `  A ) ) )
1918ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B ) ) )  =  ( ( exp `  B )  -  ( exp `  A
) ) )
20 efltlemlt.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  RR+ )
2120rpred 9762 . . . . . . . . 9  |-  ( ph  ->  D  e.  RR )
226, 3, 21absdifltd 11322 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  <  D  <->  ( ( B  -  D )  <  A  /\  A  < 
( B  +  D
) ) ) )
2322biimprd 158 . . . . . . 7  |-  ( ph  ->  ( ( ( B  -  D )  < 
A  /\  A  <  ( B  +  D ) )  ->  ( abs `  ( A  -  B
) )  <  D
) )
2423impl 380 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  ( abs `  ( A  -  B ) )  < 
D )
25 efltlemlt.ed . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( A  -  B )
)  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B
) ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) ) )
2625ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  (
( abs `  ( A  -  B )
)  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B
) ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) ) )
2724, 26mpd 13 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A
) ) )
2819, 27eqbrtrrd 4053 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  (
( exp `  B
)  -  ( exp `  A ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) )
2916, 15resubcld 8400 . . . . . 6  |-  ( ph  ->  ( ( exp `  B
)  -  ( exp `  A ) )  e.  RR )
3029ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  (
( exp `  B
)  -  ( exp `  A ) )  e.  RR )
3130ltnrd 8131 . . . 4  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  -.  ( ( exp `  B
)  -  ( exp `  A ) )  < 
( ( exp `  B
)  -  ( exp `  A ) ) )
3228, 31pm2.21dd 621 . . 3  |-  ( ( ( ph  /\  ( B  -  D )  <  A )  /\  A  <  ( B  +  D
) )  ->  A  <  B )
333, 20ltaddrpd 9796 . . . . 5  |-  ( ph  ->  B  <  ( B  +  D ) )
343, 21readdcld 8049 . . . . . 6  |-  ( ph  ->  ( B  +  D
)  e.  RR )
35 axltwlin 8087 . . . . . 6  |-  ( ( B  e.  RR  /\  ( B  +  D
)  e.  RR  /\  A  e.  RR )  ->  ( B  <  ( B  +  D )  ->  ( B  <  A  \/  A  <  ( B  +  D ) ) ) )
363, 34, 6, 35syl3anc 1249 . . . . 5  |-  ( ph  ->  ( B  <  ( B  +  D )  ->  ( B  <  A  \/  A  <  ( B  +  D ) ) ) )
3733, 36mpd 13 . . . 4  |-  ( ph  ->  ( B  <  A  \/  A  <  ( B  +  D ) ) )
3837adantr 276 . . 3  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  ( B  <  A  \/  A  < 
( B  +  D
) ) )
3914, 32, 38mpjaodan 799 . 2  |-  ( (
ph  /\  ( B  -  D )  <  A
)  ->  A  <  B )
40 simpr 110 . 2  |-  ( (
ph  /\  A  <  B )  ->  A  <  B )
413, 20ltsubrpd 9795 . . 3  |-  ( ph  ->  ( B  -  D
)  <  B )
423, 21resubcld 8400 . . . 4  |-  ( ph  ->  ( B  -  D
)  e.  RR )
43 axltwlin 8087 . . . 4  |-  ( ( ( B  -  D
)  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( B  -  D
)  <  B  ->  ( ( B  -  D
)  <  A  \/  A  <  B ) ) )
4442, 3, 6, 43syl3anc 1249 . . 3  |-  ( ph  ->  ( ( B  -  D )  <  B  ->  ( ( B  -  D )  <  A  \/  A  <  B ) ) )
4541, 44mpd 13 . 2  |-  ( ph  ->  ( ( B  -  D )  <  A  \/  A  <  B ) )
4639, 40, 45mpjaodan 799 1  |-  ( ph  ->  A  <  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   RRcr 7871    + caddc 7875    < clt 8054    - cmin 8190   RR+crp 9719   abscabs 11141   expce 11785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-ico 9960  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-bc 10819  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791
This theorem is referenced by:  eflt  14910
  Copyright terms: Public domain W3C validator