ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem1pru Unicode version

Theorem distrlem1pru 7667
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem1pru  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )

Proof of Theorem distrlem1pru
Dummy variables  x  y  z  w  v  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7621 . . . . 5  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
2 df-imp 7553 . . . . . 6  |-  .P.  =  ( y  e.  P. ,  z  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  y )  /\  h  e.  ( 1st `  z
)  /\  f  =  ( g  .Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  y )  /\  h  e.  ( 2nd `  z
)  /\  f  =  ( g  .Q  h
) ) } >. )
3 mulclnq 7460 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
42, 3genpelvu 7597 . . . . 5  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  <->  E. x  e.  ( 2nd `  A
) E. v  e.  ( 2nd `  ( B  +P.  C ) ) w  =  ( x  .Q  v ) ) )
51, 4sylan2 286 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  C  e.  P. )
)  ->  ( w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  <->  E. x  e.  ( 2nd `  A
) E. v  e.  ( 2nd `  ( B  +P.  C ) ) w  =  ( x  .Q  v ) ) )
653impb 1201 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  <->  E. x  e.  ( 2nd `  A ) E. v  e.  ( 2nd `  ( B  +P.  C ) ) w  =  ( x  .Q  v ) ) )
7 df-iplp 7552 . . . . . . . . . . 11  |-  +P.  =  ( w  e.  P. ,  x  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  w )  /\  h  e.  ( 1st `  x
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  w )  /\  h  e.  ( 2nd `  x
)  /\  f  =  ( g  +Q  h
) ) } >. )
8 addclnq 7459 . . . . . . . . . . 11  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
97, 8genpelvu 7597 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( v  e.  ( 2nd `  ( B  +P.  C ) )  <->  E. y  e.  ( 2nd `  B ) E. z  e.  ( 2nd `  C ) v  =  ( y  +Q  z
) ) )
1093adant1 1017 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( 2nd `  ( B  +P.  C
) )  <->  E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  C
) v  =  ( y  +Q  z ) ) )
1110adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  (
v  e.  ( 2nd `  ( B  +P.  C
) )  <->  E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  C
) v  =  ( y  +Q  z ) ) )
12 prop 7559 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
13 elprnqu 7566 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
1412, 13sylan 283 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  x  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
15143ad2antl1 1161 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
1615adantrr 479 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  x  e.  Q. )
1716adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  ->  x  e.  Q. )
18 prop 7559 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
19 elprnqu 7566 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 2nd `  B ) )  -> 
y  e.  Q. )
2018, 19sylan 283 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  P.  /\  y  e.  ( 2nd `  B ) )  -> 
y  e.  Q. )
21 prop 7559 . . . . . . . . . . . . . . . . . 18  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
22 elprnqu 7566 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  z  e.  ( 2nd `  C ) )  -> 
z  e.  Q. )
2321, 22sylan 283 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  P.  /\  z  e.  ( 2nd `  C ) )  -> 
z  e.  Q. )
2420, 23anim12i 338 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e.  P.  /\  y  e.  ( 2nd `  B ) )  /\  ( C  e.  P.  /\  z  e.  ( 2nd `  C ) ) )  ->  ( y  e. 
Q.  /\  z  e.  Q. ) )
2524an4s 588 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  P.  /\  C  e.  P. )  /\  ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) ) )  ->  (
y  e.  Q.  /\  z  e.  Q. )
)
26253adantl1 1155 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) ) )  ->  (
y  e.  Q.  /\  z  e.  Q. )
)
2726ad2ant2r 509 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( y  e.  Q.  /\  z  e.  Q. )
)
28 3anass 984 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  <->  ( x  e.  Q.  /\  ( y  e.  Q.  /\  z  e.  Q. ) ) )
2917, 27, 28sylanbrc 417 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )
)
30 simprr 531 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  w  =  ( x  .Q  v ) )
31 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) )  ->  v  =  ( y  +Q  z ) )
3230, 31anim12i 338 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) ) )
33 oveq2 5933 . . . . . . . . . . . . . . 15  |-  ( v  =  ( y  +Q  z )  ->  (
x  .Q  v )  =  ( x  .Q  ( y  +Q  z
) ) )
3433eqeq2d 2208 . . . . . . . . . . . . . 14  |-  ( v  =  ( y  +Q  z )  ->  (
w  =  ( x  .Q  v )  <->  w  =  ( x  .Q  (
y  +Q  z ) ) ) )
3534biimpac 298 . . . . . . . . . . . . 13  |-  ( ( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( x  .Q  ( y  +Q  z
) ) )
36 distrnqg 7471 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  .Q  ( y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( x  .Q  z
) ) )
3736eqeq2d 2208 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
w  =  ( x  .Q  ( y  +Q  z ) )  <->  w  =  ( ( x  .Q  y )  +Q  (
x  .Q  z ) ) ) )
3835, 37imbitrid 154 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( ( x  .Q  y )  +Q  (
x  .Q  z ) ) ) )
3929, 32, 38sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  ->  w  =  ( (
x  .Q  y )  +Q  ( x  .Q  z ) ) )
40 mulclpr 7656 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
41403adant3 1019 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
4241ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( A  .P.  B
)  e.  P. )
43 mulclpr 7656 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
44433adant2 1018 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
4544ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( A  .P.  C
)  e.  P. )
46 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) )  ->  y  e.  ( 2nd `  B
) )
472, 3genppreclu 7599 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  ->  ( x  .Q  y )  e.  ( 2nd `  ( A  .P.  B ) ) ) )
48473adant3 1019 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  ( 2nd `  A )  /\  y  e.  ( 2nd `  B ) )  ->  ( x  .Q  y )  e.  ( 2nd `  ( A  .P.  B ) ) ) )
4948impl 380 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  ( 2nd `  A ) )  /\  y  e.  ( 2nd `  B
) )  ->  (
x  .Q  y )  e.  ( 2nd `  ( A  .P.  B ) ) )
5049adantlrr 483 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  y  e.  ( 2nd `  B ) )  -> 
( x  .Q  y
)  e.  ( 2nd `  ( A  .P.  B
) ) )
5146, 50sylan2 286 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( x  .Q  y
)  e.  ( 2nd `  ( A  .P.  B
) ) )
52 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) )  ->  z  e.  ( 2nd `  C
) )
532, 3genppreclu 7599 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( x  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) )  ->  ( x  .Q  z )  e.  ( 2nd `  ( A  .P.  C ) ) ) )
54533adant2 1018 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  C ) )  ->  ( x  .Q  z )  e.  ( 2nd `  ( A  .P.  C ) ) ) )
5554impl 380 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  ( 2nd `  A ) )  /\  z  e.  ( 2nd `  C
) )  ->  (
x  .Q  z )  e.  ( 2nd `  ( A  .P.  C ) ) )
5655adantlrr 483 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  z  e.  ( 2nd `  C ) )  -> 
( x  .Q  z
)  e.  ( 2nd `  ( A  .P.  C
) ) )
5752, 56sylan2 286 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( x  .Q  z
)  e.  ( 2nd `  ( A  .P.  C
) ) )
587, 8genppreclu 7599 . . . . . . . . . . . . 13  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( ( ( x  .Q  y )  e.  ( 2nd `  ( A  .P.  B ) )  /\  ( x  .Q  z )  e.  ( 2nd `  ( A  .P.  C ) ) )  ->  ( (
x  .Q  y )  +Q  ( x  .Q  z ) )  e.  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) )
5958imp 124 . . . . . . . . . . . 12  |-  ( ( ( ( A  .P.  B )  e.  P.  /\  ( A  .P.  C )  e.  P. )  /\  ( ( x  .Q  y )  e.  ( 2nd `  ( A  .P.  B ) )  /\  ( x  .Q  z )  e.  ( 2nd `  ( A  .P.  C ) ) ) )  ->  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  e.  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) )
6042, 45, 51, 57, 59syl22anc 1250 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
6139, 60eqeltrd 2273 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
6261exp32 365 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  (
( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) )  ->  ( v  =  ( y  +Q  z )  ->  w  e.  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) ) )
6362rexlimdvv 2621 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  ( E. y  e.  ( 2nd `  B ) E. z  e.  ( 2nd `  C ) v  =  ( y  +Q  z
)  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
6411, 63sylbid 150 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  (
v  e.  ( 2nd `  ( B  +P.  C
) )  ->  w  e.  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) )
6564exp32 365 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  ( 2nd `  A )  ->  (
w  =  ( x  .Q  v )  -> 
( v  e.  ( 2nd `  ( B  +P.  C ) )  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) ) )
6665com34 83 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  ( 2nd `  A )  ->  (
v  e.  ( 2nd `  ( B  +P.  C
) )  ->  (
w  =  ( x  .Q  v )  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) ) )
6766impd 254 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  ( 2nd `  A )  /\  v  e.  ( 2nd `  ( B  +P.  C ) ) )  ->  ( w  =  ( x  .Q  v )  ->  w  e.  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) ) )
6867rexlimdvv 2621 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. x  e.  ( 2nd `  A ) E. v  e.  ( 2nd `  ( B  +P.  C
) ) w  =  ( x  .Q  v
)  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
696, 68sylbid 150 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
7069ssrdv 3190 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476    C_ wss 3157   <.cop 3626   ` cfv 5259  (class class class)co 5925   1stc1st 6205   2ndc2nd 6206   Q.cnq 7364    +Q cplq 7366    .Q cmq 7367   P.cnp 7375    +P. cpp 7377    .P. cmp 7378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-iplp 7552  df-imp 7553
This theorem is referenced by:  distrprg  7672
  Copyright terms: Public domain W3C validator