ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem1pru Unicode version

Theorem distrlem1pru 7731
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem1pru  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )

Proof of Theorem distrlem1pru
Dummy variables  x  y  z  w  v  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7685 . . . . 5  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
2 df-imp 7617 . . . . . 6  |-  .P.  =  ( y  e.  P. ,  z  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  y )  /\  h  e.  ( 1st `  z
)  /\  f  =  ( g  .Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  y )  /\  h  e.  ( 2nd `  z
)  /\  f  =  ( g  .Q  h
) ) } >. )
3 mulclnq 7524 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
42, 3genpelvu 7661 . . . . 5  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  <->  E. x  e.  ( 2nd `  A
) E. v  e.  ( 2nd `  ( B  +P.  C ) ) w  =  ( x  .Q  v ) ) )
51, 4sylan2 286 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  C  e.  P. )
)  ->  ( w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  <->  E. x  e.  ( 2nd `  A
) E. v  e.  ( 2nd `  ( B  +P.  C ) ) w  =  ( x  .Q  v ) ) )
653impb 1202 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  <->  E. x  e.  ( 2nd `  A ) E. v  e.  ( 2nd `  ( B  +P.  C ) ) w  =  ( x  .Q  v ) ) )
7 df-iplp 7616 . . . . . . . . . . 11  |-  +P.  =  ( w  e.  P. ,  x  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  w )  /\  h  e.  ( 1st `  x
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  w )  /\  h  e.  ( 2nd `  x
)  /\  f  =  ( g  +Q  h
) ) } >. )
8 addclnq 7523 . . . . . . . . . . 11  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
97, 8genpelvu 7661 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( v  e.  ( 2nd `  ( B  +P.  C ) )  <->  E. y  e.  ( 2nd `  B ) E. z  e.  ( 2nd `  C ) v  =  ( y  +Q  z
) ) )
1093adant1 1018 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( 2nd `  ( B  +P.  C
) )  <->  E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  C
) v  =  ( y  +Q  z ) ) )
1110adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  (
v  e.  ( 2nd `  ( B  +P.  C
) )  <->  E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  C
) v  =  ( y  +Q  z ) ) )
12 prop 7623 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
13 elprnqu 7630 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
1412, 13sylan 283 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  x  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
15143ad2antl1 1162 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
1615adantrr 479 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  x  e.  Q. )
1716adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  ->  x  e.  Q. )
18 prop 7623 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
19 elprnqu 7630 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 2nd `  B ) )  -> 
y  e.  Q. )
2018, 19sylan 283 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  P.  /\  y  e.  ( 2nd `  B ) )  -> 
y  e.  Q. )
21 prop 7623 . . . . . . . . . . . . . . . . . 18  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
22 elprnqu 7630 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  z  e.  ( 2nd `  C ) )  -> 
z  e.  Q. )
2321, 22sylan 283 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  P.  /\  z  e.  ( 2nd `  C ) )  -> 
z  e.  Q. )
2420, 23anim12i 338 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e.  P.  /\  y  e.  ( 2nd `  B ) )  /\  ( C  e.  P.  /\  z  e.  ( 2nd `  C ) ) )  ->  ( y  e. 
Q.  /\  z  e.  Q. ) )
2524an4s 588 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  P.  /\  C  e.  P. )  /\  ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) ) )  ->  (
y  e.  Q.  /\  z  e.  Q. )
)
26253adantl1 1156 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) ) )  ->  (
y  e.  Q.  /\  z  e.  Q. )
)
2726ad2ant2r 509 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( y  e.  Q.  /\  z  e.  Q. )
)
28 3anass 985 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  <->  ( x  e.  Q.  /\  ( y  e.  Q.  /\  z  e.  Q. ) ) )
2917, 27, 28sylanbrc 417 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )
)
30 simprr 531 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  w  =  ( x  .Q  v ) )
31 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) )  ->  v  =  ( y  +Q  z ) )
3230, 31anim12i 338 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) ) )
33 oveq2 5975 . . . . . . . . . . . . . . 15  |-  ( v  =  ( y  +Q  z )  ->  (
x  .Q  v )  =  ( x  .Q  ( y  +Q  z
) ) )
3433eqeq2d 2219 . . . . . . . . . . . . . 14  |-  ( v  =  ( y  +Q  z )  ->  (
w  =  ( x  .Q  v )  <->  w  =  ( x  .Q  (
y  +Q  z ) ) ) )
3534biimpac 298 . . . . . . . . . . . . 13  |-  ( ( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( x  .Q  ( y  +Q  z
) ) )
36 distrnqg 7535 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  .Q  ( y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( x  .Q  z
) ) )
3736eqeq2d 2219 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
w  =  ( x  .Q  ( y  +Q  z ) )  <->  w  =  ( ( x  .Q  y )  +Q  (
x  .Q  z ) ) ) )
3835, 37imbitrid 154 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( ( x  .Q  y )  +Q  (
x  .Q  z ) ) ) )
3929, 32, 38sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  ->  w  =  ( (
x  .Q  y )  +Q  ( x  .Q  z ) ) )
40 mulclpr 7720 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
41403adant3 1020 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
4241ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( A  .P.  B
)  e.  P. )
43 mulclpr 7720 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
44433adant2 1019 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
4544ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( A  .P.  C
)  e.  P. )
46 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) )  ->  y  e.  ( 2nd `  B
) )
472, 3genppreclu 7663 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  ->  ( x  .Q  y )  e.  ( 2nd `  ( A  .P.  B ) ) ) )
48473adant3 1020 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  ( 2nd `  A )  /\  y  e.  ( 2nd `  B ) )  ->  ( x  .Q  y )  e.  ( 2nd `  ( A  .P.  B ) ) ) )
4948impl 380 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  ( 2nd `  A ) )  /\  y  e.  ( 2nd `  B
) )  ->  (
x  .Q  y )  e.  ( 2nd `  ( A  .P.  B ) ) )
5049adantlrr 483 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  y  e.  ( 2nd `  B ) )  -> 
( x  .Q  y
)  e.  ( 2nd `  ( A  .P.  B
) ) )
5146, 50sylan2 286 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( x  .Q  y
)  e.  ( 2nd `  ( A  .P.  B
) ) )
52 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) )  ->  z  e.  ( 2nd `  C
) )
532, 3genppreclu 7663 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( x  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) )  ->  ( x  .Q  z )  e.  ( 2nd `  ( A  .P.  C ) ) ) )
54533adant2 1019 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  C ) )  ->  ( x  .Q  z )  e.  ( 2nd `  ( A  .P.  C ) ) ) )
5554impl 380 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  ( 2nd `  A ) )  /\  z  e.  ( 2nd `  C
) )  ->  (
x  .Q  z )  e.  ( 2nd `  ( A  .P.  C ) ) )
5655adantlrr 483 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  z  e.  ( 2nd `  C ) )  -> 
( x  .Q  z
)  e.  ( 2nd `  ( A  .P.  C
) ) )
5752, 56sylan2 286 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( x  .Q  z
)  e.  ( 2nd `  ( A  .P.  C
) ) )
587, 8genppreclu 7663 . . . . . . . . . . . . 13  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( ( ( x  .Q  y )  e.  ( 2nd `  ( A  .P.  B ) )  /\  ( x  .Q  z )  e.  ( 2nd `  ( A  .P.  C ) ) )  ->  ( (
x  .Q  y )  +Q  ( x  .Q  z ) )  e.  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) )
5958imp 124 . . . . . . . . . . . 12  |-  ( ( ( ( A  .P.  B )  e.  P.  /\  ( A  .P.  C )  e.  P. )  /\  ( ( x  .Q  y )  e.  ( 2nd `  ( A  .P.  B ) )  /\  ( x  .Q  z )  e.  ( 2nd `  ( A  .P.  C ) ) ) )  ->  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  e.  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) )
6042, 45, 51, 57, 59syl22anc 1251 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
6139, 60eqeltrd 2284 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
6261exp32 365 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  (
( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) )  ->  ( v  =  ( y  +Q  z )  ->  w  e.  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) ) )
6362rexlimdvv 2632 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  ( E. y  e.  ( 2nd `  B ) E. z  e.  ( 2nd `  C ) v  =  ( y  +Q  z
)  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
6411, 63sylbid 150 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  (
v  e.  ( 2nd `  ( B  +P.  C
) )  ->  w  e.  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) )
6564exp32 365 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  ( 2nd `  A )  ->  (
w  =  ( x  .Q  v )  -> 
( v  e.  ( 2nd `  ( B  +P.  C ) )  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) ) )
6665com34 83 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  ( 2nd `  A )  ->  (
v  e.  ( 2nd `  ( B  +P.  C
) )  ->  (
w  =  ( x  .Q  v )  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) ) )
6766impd 254 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  ( 2nd `  A )  /\  v  e.  ( 2nd `  ( B  +P.  C ) ) )  ->  ( w  =  ( x  .Q  v )  ->  w  e.  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) ) )
6867rexlimdvv 2632 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. x  e.  ( 2nd `  A ) E. v  e.  ( 2nd `  ( B  +P.  C
) ) w  =  ( x  .Q  v
)  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
696, 68sylbid 150 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
7069ssrdv 3207 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487    C_ wss 3174   <.cop 3646   ` cfv 5290  (class class class)co 5967   1stc1st 6247   2ndc2nd 6248   Q.cnq 7428    +Q cplq 7430    .Q cmq 7431   P.cnp 7439    +P. cpp 7441    .P. cmp 7442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-iplp 7616  df-imp 7617
This theorem is referenced by:  distrprg  7736
  Copyright terms: Public domain W3C validator