ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issgrpd Unicode version

Theorem issgrpd 12872
Description: Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
issgrpd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
issgrpd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
issgrpd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
issgrpd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
issgrpd.v  |-  ( ph  ->  G  e.  V )
Assertion
Ref Expression
issgrpd  |-  ( ph  ->  G  e. Smgrp )
Distinct variable groups:    x, y, z, B    x, G, y, z    ph, x, y, z
Allowed substitution hints:    .+ ( x, y,
z)    V( x, y, z)

Proof of Theorem issgrpd
StepHypRef Expression
1 issgrpd.c . . . . . . 7  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
213expib 1208 . . . . . 6  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B ) )
3 issgrpd.b . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  G ) )
43eleq2d 2259 . . . . . . 7  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  G
) ) )
53eleq2d 2259 . . . . . . 7  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( Base `  G
) ) )
64, 5anbi12d 473 . . . . . 6  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B )  <->  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) ) )
7 issgrpd.p . . . . . . . 8  |-  ( ph  ->  .+  =  ( +g  `  G ) )
87oveqd 5912 . . . . . . 7  |-  ( ph  ->  ( x  .+  y
)  =  ( x ( +g  `  G
) y ) )
98, 3eleq12d 2260 . . . . . 6  |-  ( ph  ->  ( ( x  .+  y )  e.  B  <->  ( x ( +g  `  G
) y )  e.  ( Base `  G
) ) )
102, 6, 93imtr3d 202 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  ( x
( +g  `  G ) y )  e.  (
Base `  G )
) )
1110imp 124 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
12 df-3an 982 . . . . . . . . 9  |-  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  <->  ( ( x  e.  B  /\  y  e.  B
)  /\  z  e.  B ) )
13 issgrpd.a . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
1412, 13sylan2br 288 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  B  /\  y  e.  B )  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
1514ex 115 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  B  /\  y  e.  B )  /\  z  e.  B )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) ) )
163eleq2d 2259 . . . . . . . 8  |-  ( ph  ->  ( z  e.  B  <->  z  e.  ( Base `  G
) ) )
176, 16anbi12d 473 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  B  /\  y  e.  B )  /\  z  e.  B )  <->  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  z  e.  ( Base `  G
) ) ) )
18 eqidd 2190 . . . . . . . . 9  |-  ( ph  ->  z  =  z )
197, 8, 18oveq123d 5916 . . . . . . . 8  |-  ( ph  ->  ( ( x  .+  y )  .+  z
)  =  ( ( x ( +g  `  G
) y ) ( +g  `  G ) z ) )
20 eqidd 2190 . . . . . . . . 9  |-  ( ph  ->  x  =  x )
217oveqd 5912 . . . . . . . . 9  |-  ( ph  ->  ( y  .+  z
)  =  ( y ( +g  `  G
) z ) )
227, 20, 21oveq123d 5916 . . . . . . . 8  |-  ( ph  ->  ( x  .+  (
y  .+  z )
)  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) )
2319, 22eqeq12d 2204 . . . . . . 7  |-  ( ph  ->  ( ( ( x 
.+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  <-> 
( ( x ( +g  `  G ) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G ) z ) ) ) )
2415, 17, 233imtr3d 202 . . . . . 6  |-  ( ph  ->  ( ( ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  /\  z  e.  ( Base `  G )
)  ->  ( (
x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) ) )
2524impl 380 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) ) )  /\  z  e.  ( Base `  G ) )  -> 
( ( x ( +g  `  G ) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G ) z ) ) )
2625ralrimiva 2563 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  ->  A. z  e.  ( Base `  G
) ( ( x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) )
2711, 26jca 306 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  ->  (
( x ( +g  `  G ) y )  e.  ( Base `  G
)  /\  A. z  e.  ( Base `  G
) ( ( x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) ) )
2827ralrimivva 2572 . 2  |-  ( ph  ->  A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( ( x ( +g  `  G ) y )  e.  ( Base `  G
)  /\  A. z  e.  ( Base `  G
) ( ( x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) ) )
29 issgrpd.v . . 3  |-  ( ph  ->  G  e.  V )
30 eqid 2189 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
31 eqid 2189 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
3230, 31issgrpv 12864 . . 3  |-  ( G  e.  V  ->  ( G  e. Smgrp  <->  A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( ( x ( +g  `  G ) y )  e.  ( Base `  G
)  /\  A. z  e.  ( Base `  G
) ( ( x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) ) ) )
3329, 32syl 14 . 2  |-  ( ph  ->  ( G  e. Smgrp  <->  A. x  e.  ( Base `  G
) A. y  e.  ( Base `  G
) ( ( x ( +g  `  G
) y )  e.  ( Base `  G
)  /\  A. z  e.  ( Base `  G
) ( ( x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) ) ) )
3428, 33mpbird 167 1  |-  ( ph  ->  G  e. Smgrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468   ` cfv 5235  (class class class)co 5895   Basecbs 12511   +g cplusg 12586  Smgrpcsgrp 12861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-ov 5898  df-inn 8949  df-2 9007  df-ndx 12514  df-slot 12515  df-base 12517  df-plusg 12599  df-mgm 12829  df-sgrp 12862
This theorem is referenced by:  isrngd  13304
  Copyright terms: Public domain W3C validator