| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issgrpd | Unicode version | ||
| Description: Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025.) |
| Ref | Expression |
|---|---|
| issgrpd.b |
|
| issgrpd.p |
|
| issgrpd.c |
|
| issgrpd.a |
|
| issgrpd.v |
|
| Ref | Expression |
|---|---|
| issgrpd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issgrpd.c |
. . . . . . 7
| |
| 2 | 1 | 3expib 1230 |
. . . . . 6
|
| 3 | issgrpd.b |
. . . . . . . 8
| |
| 4 | 3 | eleq2d 2299 |
. . . . . . 7
|
| 5 | 3 | eleq2d 2299 |
. . . . . . 7
|
| 6 | 4, 5 | anbi12d 473 |
. . . . . 6
|
| 7 | issgrpd.p |
. . . . . . . 8
| |
| 8 | 7 | oveqd 6018 |
. . . . . . 7
|
| 9 | 8, 3 | eleq12d 2300 |
. . . . . 6
|
| 10 | 2, 6, 9 | 3imtr3d 202 |
. . . . 5
|
| 11 | 10 | imp 124 |
. . . 4
|
| 12 | df-3an 1004 |
. . . . . . . . 9
| |
| 13 | issgrpd.a |
. . . . . . . . 9
| |
| 14 | 12, 13 | sylan2br 288 |
. . . . . . . 8
|
| 15 | 14 | ex 115 |
. . . . . . 7
|
| 16 | 3 | eleq2d 2299 |
. . . . . . . 8
|
| 17 | 6, 16 | anbi12d 473 |
. . . . . . 7
|
| 18 | eqidd 2230 |
. . . . . . . . 9
| |
| 19 | 7, 8, 18 | oveq123d 6022 |
. . . . . . . 8
|
| 20 | eqidd 2230 |
. . . . . . . . 9
| |
| 21 | 7 | oveqd 6018 |
. . . . . . . . 9
|
| 22 | 7, 20, 21 | oveq123d 6022 |
. . . . . . . 8
|
| 23 | 19, 22 | eqeq12d 2244 |
. . . . . . 7
|
| 24 | 15, 17, 23 | 3imtr3d 202 |
. . . . . 6
|
| 25 | 24 | impl 380 |
. . . . 5
|
| 26 | 25 | ralrimiva 2603 |
. . . 4
|
| 27 | 11, 26 | jca 306 |
. . 3
|
| 28 | 27 | ralrimivva 2612 |
. 2
|
| 29 | issgrpd.v |
. . 3
| |
| 30 | eqid 2229 |
. . . 4
| |
| 31 | eqid 2229 |
. . . 4
| |
| 32 | 30, 31 | issgrpv 13437 |
. . 3
|
| 33 | 29, 32 | syl 14 |
. 2
|
| 34 | 28, 33 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-mgm 13389 df-sgrp 13435 |
| This theorem is referenced by: prdssgrpd 13448 isrngd 13916 |
| Copyright terms: Public domain | W3C validator |