| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issgrpd | Unicode version | ||
| Description: Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025.) |
| Ref | Expression |
|---|---|
| issgrpd.b |
|
| issgrpd.p |
|
| issgrpd.c |
|
| issgrpd.a |
|
| issgrpd.v |
|
| Ref | Expression |
|---|---|
| issgrpd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issgrpd.c |
. . . . . . 7
| |
| 2 | 1 | 3expib 1208 |
. . . . . 6
|
| 3 | issgrpd.b |
. . . . . . . 8
| |
| 4 | 3 | eleq2d 2266 |
. . . . . . 7
|
| 5 | 3 | eleq2d 2266 |
. . . . . . 7
|
| 6 | 4, 5 | anbi12d 473 |
. . . . . 6
|
| 7 | issgrpd.p |
. . . . . . . 8
| |
| 8 | 7 | oveqd 5939 |
. . . . . . 7
|
| 9 | 8, 3 | eleq12d 2267 |
. . . . . 6
|
| 10 | 2, 6, 9 | 3imtr3d 202 |
. . . . 5
|
| 11 | 10 | imp 124 |
. . . 4
|
| 12 | df-3an 982 |
. . . . . . . . 9
| |
| 13 | issgrpd.a |
. . . . . . . . 9
| |
| 14 | 12, 13 | sylan2br 288 |
. . . . . . . 8
|
| 15 | 14 | ex 115 |
. . . . . . 7
|
| 16 | 3 | eleq2d 2266 |
. . . . . . . 8
|
| 17 | 6, 16 | anbi12d 473 |
. . . . . . 7
|
| 18 | eqidd 2197 |
. . . . . . . . 9
| |
| 19 | 7, 8, 18 | oveq123d 5943 |
. . . . . . . 8
|
| 20 | eqidd 2197 |
. . . . . . . . 9
| |
| 21 | 7 | oveqd 5939 |
. . . . . . . . 9
|
| 22 | 7, 20, 21 | oveq123d 5943 |
. . . . . . . 8
|
| 23 | 19, 22 | eqeq12d 2211 |
. . . . . . 7
|
| 24 | 15, 17, 23 | 3imtr3d 202 |
. . . . . 6
|
| 25 | 24 | impl 380 |
. . . . 5
|
| 26 | 25 | ralrimiva 2570 |
. . . 4
|
| 27 | 11, 26 | jca 306 |
. . 3
|
| 28 | 27 | ralrimivva 2579 |
. 2
|
| 29 | issgrpd.v |
. . 3
| |
| 30 | eqid 2196 |
. . . 4
| |
| 31 | eqid 2196 |
. . . 4
| |
| 32 | 30, 31 | issgrpv 13047 |
. . 3
|
| 33 | 29, 32 | syl 14 |
. 2
|
| 34 | 28, 33 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mgm 12999 df-sgrp 13045 |
| This theorem is referenced by: isrngd 13509 |
| Copyright terms: Public domain | W3C validator |