ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issgrpd Unicode version

Theorem issgrpd 13445
Description: Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
issgrpd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
issgrpd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
issgrpd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
issgrpd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
issgrpd.v  |-  ( ph  ->  G  e.  V )
Assertion
Ref Expression
issgrpd  |-  ( ph  ->  G  e. Smgrp )
Distinct variable groups:    x, y, z, B    x, G, y, z    ph, x, y, z
Allowed substitution hints:    .+ ( x, y,
z)    V( x, y, z)

Proof of Theorem issgrpd
StepHypRef Expression
1 issgrpd.c . . . . . . 7  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
213expib 1230 . . . . . 6  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B ) )
3 issgrpd.b . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  G ) )
43eleq2d 2299 . . . . . . 7  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  G
) ) )
53eleq2d 2299 . . . . . . 7  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( Base `  G
) ) )
64, 5anbi12d 473 . . . . . 6  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B )  <->  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) ) )
7 issgrpd.p . . . . . . . 8  |-  ( ph  ->  .+  =  ( +g  `  G ) )
87oveqd 6018 . . . . . . 7  |-  ( ph  ->  ( x  .+  y
)  =  ( x ( +g  `  G
) y ) )
98, 3eleq12d 2300 . . . . . 6  |-  ( ph  ->  ( ( x  .+  y )  e.  B  <->  ( x ( +g  `  G
) y )  e.  ( Base `  G
) ) )
102, 6, 93imtr3d 202 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  ( x
( +g  `  G ) y )  e.  (
Base `  G )
) )
1110imp 124 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
12 df-3an 1004 . . . . . . . . 9  |-  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  <->  ( ( x  e.  B  /\  y  e.  B
)  /\  z  e.  B ) )
13 issgrpd.a . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
1412, 13sylan2br 288 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  B  /\  y  e.  B )  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
1514ex 115 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  B  /\  y  e.  B )  /\  z  e.  B )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) ) )
163eleq2d 2299 . . . . . . . 8  |-  ( ph  ->  ( z  e.  B  <->  z  e.  ( Base `  G
) ) )
176, 16anbi12d 473 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  B  /\  y  e.  B )  /\  z  e.  B )  <->  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  z  e.  ( Base `  G
) ) ) )
18 eqidd 2230 . . . . . . . . 9  |-  ( ph  ->  z  =  z )
197, 8, 18oveq123d 6022 . . . . . . . 8  |-  ( ph  ->  ( ( x  .+  y )  .+  z
)  =  ( ( x ( +g  `  G
) y ) ( +g  `  G ) z ) )
20 eqidd 2230 . . . . . . . . 9  |-  ( ph  ->  x  =  x )
217oveqd 6018 . . . . . . . . 9  |-  ( ph  ->  ( y  .+  z
)  =  ( y ( +g  `  G
) z ) )
227, 20, 21oveq123d 6022 . . . . . . . 8  |-  ( ph  ->  ( x  .+  (
y  .+  z )
)  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) )
2319, 22eqeq12d 2244 . . . . . . 7  |-  ( ph  ->  ( ( ( x 
.+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  <-> 
( ( x ( +g  `  G ) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G ) z ) ) ) )
2415, 17, 233imtr3d 202 . . . . . 6  |-  ( ph  ->  ( ( ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  /\  z  e.  ( Base `  G )
)  ->  ( (
x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) ) )
2524impl 380 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) ) )  /\  z  e.  ( Base `  G ) )  -> 
( ( x ( +g  `  G ) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G ) z ) ) )
2625ralrimiva 2603 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  ->  A. z  e.  ( Base `  G
) ( ( x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) )
2711, 26jca 306 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  ->  (
( x ( +g  `  G ) y )  e.  ( Base `  G
)  /\  A. z  e.  ( Base `  G
) ( ( x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) ) )
2827ralrimivva 2612 . 2  |-  ( ph  ->  A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( ( x ( +g  `  G ) y )  e.  ( Base `  G
)  /\  A. z  e.  ( Base `  G
) ( ( x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) ) )
29 issgrpd.v . . 3  |-  ( ph  ->  G  e.  V )
30 eqid 2229 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
31 eqid 2229 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
3230, 31issgrpv 13437 . . 3  |-  ( G  e.  V  ->  ( G  e. Smgrp  <->  A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( ( x ( +g  `  G ) y )  e.  ( Base `  G
)  /\  A. z  e.  ( Base `  G
) ( ( x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) ) ) )
3329, 32syl 14 . 2  |-  ( ph  ->  ( G  e. Smgrp  <->  A. x  e.  ( Base `  G
) A. y  e.  ( Base `  G
) ( ( x ( +g  `  G
) y )  e.  ( Base `  G
)  /\  A. z  e.  ( Base `  G
) ( ( x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) ) ) )
3428, 33mpbird 167 1  |-  ( ph  ->  G  e. Smgrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110  Smgrpcsgrp 13434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mgm 13389  df-sgrp 13435
This theorem is referenced by:  prdssgrpd  13448  isrngd  13916
  Copyright terms: Public domain W3C validator