Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > foco2 | Unicode version |
Description: If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
foco2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 992 | . 2 | |
2 | foelrn 5732 | . . . . . 6 | |
3 | ffvelrn 5629 | . . . . . . . . . 10 | |
4 | 3 | adantll 473 | . . . . . . . . 9 |
5 | fvco3 5567 | . . . . . . . . . 10 | |
6 | 5 | adantll 473 | . . . . . . . . 9 |
7 | fveq2 5496 | . . . . . . . . . . 11 | |
8 | 7 | eqeq2d 2182 | . . . . . . . . . 10 |
9 | 8 | rspcev 2834 | . . . . . . . . 9 |
10 | 4, 6, 9 | syl2anc 409 | . . . . . . . 8 |
11 | eqeq1 2177 | . . . . . . . . 9 | |
12 | 11 | rexbidv 2471 | . . . . . . . 8 |
13 | 10, 12 | syl5ibrcom 156 | . . . . . . 7 |
14 | 13 | rexlimdva 2587 | . . . . . 6 |
15 | 2, 14 | syl5 32 | . . . . 5 |
16 | 15 | impl 378 | . . . 4 |
17 | 16 | ralrimiva 2543 | . . 3 |
18 | 17 | 3impa 1189 | . 2 |
19 | dffo3 5643 | . 2 | |
20 | 1, 18, 19 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 ccom 4615 wf 5194 wfo 5196 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |