ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foco2 Unicode version

Theorem foco2 5800
Description: If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
foco2  |-  ( ( F : B --> C  /\  G : A --> B  /\  ( F  o.  G
) : A -onto-> C
)  ->  F : B -onto-> C )

Proof of Theorem foco2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . 2  |-  ( ( F : B --> C  /\  G : A --> B  /\  ( F  o.  G
) : A -onto-> C
)  ->  F : B
--> C )
2 foelrn 5799 . . . . . 6  |-  ( ( ( F  o.  G
) : A -onto-> C  /\  y  e.  C
)  ->  E. z  e.  A  y  =  ( ( F  o.  G ) `  z
) )
3 ffvelcdm 5695 . . . . . . . . . 10  |-  ( ( G : A --> B  /\  z  e.  A )  ->  ( G `  z
)  e.  B )
43adantll 476 . . . . . . . . 9  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  z  e.  A )  ->  ( G `  z )  e.  B )
5 fvco3 5632 . . . . . . . . . 10  |-  ( ( G : A --> B  /\  z  e.  A )  ->  ( ( F  o.  G ) `  z
)  =  ( F `
 ( G `  z ) ) )
65adantll 476 . . . . . . . . 9  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  z  e.  A )  ->  (
( F  o.  G
) `  z )  =  ( F `  ( G `  z ) ) )
7 fveq2 5558 . . . . . . . . . . 11  |-  ( x  =  ( G `  z )  ->  ( F `  x )  =  ( F `  ( G `  z ) ) )
87eqeq2d 2208 . . . . . . . . . 10  |-  ( x  =  ( G `  z )  ->  (
( ( F  o.  G ) `  z
)  =  ( F `
 x )  <->  ( ( F  o.  G ) `  z )  =  ( F `  ( G `
 z ) ) ) )
98rspcev 2868 . . . . . . . . 9  |-  ( ( ( G `  z
)  e.  B  /\  ( ( F  o.  G ) `  z
)  =  ( F `
 ( G `  z ) ) )  ->  E. x  e.  B  ( ( F  o.  G ) `  z
)  =  ( F `
 x ) )
104, 6, 9syl2anc 411 . . . . . . . 8  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  z  e.  A )  ->  E. x  e.  B  ( ( F  o.  G ) `  z )  =  ( F `  x ) )
11 eqeq1 2203 . . . . . . . . 9  |-  ( y  =  ( ( F  o.  G ) `  z )  ->  (
y  =  ( F `
 x )  <->  ( ( F  o.  G ) `  z )  =  ( F `  x ) ) )
1211rexbidv 2498 . . . . . . . 8  |-  ( y  =  ( ( F  o.  G ) `  z )  ->  ( E. x  e.  B  y  =  ( F `  x )  <->  E. x  e.  B  ( ( F  o.  G ) `  z )  =  ( F `  x ) ) )
1310, 12syl5ibrcom 157 . . . . . . 7  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  z  e.  A )  ->  (
y  =  ( ( F  o.  G ) `
 z )  ->  E. x  e.  B  y  =  ( F `  x ) ) )
1413rexlimdva 2614 . . . . . 6  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( E. z  e.  A  y  =  ( ( F  o.  G ) `  z
)  ->  E. x  e.  B  y  =  ( F `  x ) ) )
152, 14syl5 32 . . . . 5  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( ( ( F  o.  G ) : A -onto-> C  /\  y  e.  C )  ->  E. x  e.  B  y  =  ( F `  x ) ) )
1615impl 380 . . . 4  |-  ( ( ( ( F : B
--> C  /\  G : A
--> B )  /\  ( F  o.  G ) : A -onto-> C )  /\  y  e.  C )  ->  E. x  e.  B  y  =  ( F `  x ) )
1716ralrimiva 2570 . . 3  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  ( F  o.  G ) : A -onto-> C )  ->  A. y  e.  C  E. x  e.  B  y  =  ( F `  x ) )
18173impa 1196 . 2  |-  ( ( F : B --> C  /\  G : A --> B  /\  ( F  o.  G
) : A -onto-> C
)  ->  A. y  e.  C  E. x  e.  B  y  =  ( F `  x ) )
19 dffo3 5709 . 2  |-  ( F : B -onto-> C  <->  ( F : B --> C  /\  A. y  e.  C  E. x  e.  B  y  =  ( F `  x ) ) )
201, 18, 19sylanbrc 417 1  |-  ( ( F : B --> C  /\  G : A --> B  /\  ( F  o.  G
) : A -onto-> C
)  ->  F : B -onto-> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    o. ccom 4667   -->wf 5254   -onto->wfo 5256   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator