ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foco2 Unicode version

Theorem foco2 5733
Description: If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
foco2  |-  ( ( F : B --> C  /\  G : A --> B  /\  ( F  o.  G
) : A -onto-> C
)  ->  F : B -onto-> C )

Proof of Theorem foco2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 992 . 2  |-  ( ( F : B --> C  /\  G : A --> B  /\  ( F  o.  G
) : A -onto-> C
)  ->  F : B
--> C )
2 foelrn 5732 . . . . . 6  |-  ( ( ( F  o.  G
) : A -onto-> C  /\  y  e.  C
)  ->  E. z  e.  A  y  =  ( ( F  o.  G ) `  z
) )
3 ffvelrn 5629 . . . . . . . . . 10  |-  ( ( G : A --> B  /\  z  e.  A )  ->  ( G `  z
)  e.  B )
43adantll 473 . . . . . . . . 9  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  z  e.  A )  ->  ( G `  z )  e.  B )
5 fvco3 5567 . . . . . . . . . 10  |-  ( ( G : A --> B  /\  z  e.  A )  ->  ( ( F  o.  G ) `  z
)  =  ( F `
 ( G `  z ) ) )
65adantll 473 . . . . . . . . 9  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  z  e.  A )  ->  (
( F  o.  G
) `  z )  =  ( F `  ( G `  z ) ) )
7 fveq2 5496 . . . . . . . . . . 11  |-  ( x  =  ( G `  z )  ->  ( F `  x )  =  ( F `  ( G `  z ) ) )
87eqeq2d 2182 . . . . . . . . . 10  |-  ( x  =  ( G `  z )  ->  (
( ( F  o.  G ) `  z
)  =  ( F `
 x )  <->  ( ( F  o.  G ) `  z )  =  ( F `  ( G `
 z ) ) ) )
98rspcev 2834 . . . . . . . . 9  |-  ( ( ( G `  z
)  e.  B  /\  ( ( F  o.  G ) `  z
)  =  ( F `
 ( G `  z ) ) )  ->  E. x  e.  B  ( ( F  o.  G ) `  z
)  =  ( F `
 x ) )
104, 6, 9syl2anc 409 . . . . . . . 8  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  z  e.  A )  ->  E. x  e.  B  ( ( F  o.  G ) `  z )  =  ( F `  x ) )
11 eqeq1 2177 . . . . . . . . 9  |-  ( y  =  ( ( F  o.  G ) `  z )  ->  (
y  =  ( F `
 x )  <->  ( ( F  o.  G ) `  z )  =  ( F `  x ) ) )
1211rexbidv 2471 . . . . . . . 8  |-  ( y  =  ( ( F  o.  G ) `  z )  ->  ( E. x  e.  B  y  =  ( F `  x )  <->  E. x  e.  B  ( ( F  o.  G ) `  z )  =  ( F `  x ) ) )
1310, 12syl5ibrcom 156 . . . . . . 7  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  z  e.  A )  ->  (
y  =  ( ( F  o.  G ) `
 z )  ->  E. x  e.  B  y  =  ( F `  x ) ) )
1413rexlimdva 2587 . . . . . 6  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( E. z  e.  A  y  =  ( ( F  o.  G ) `  z
)  ->  E. x  e.  B  y  =  ( F `  x ) ) )
152, 14syl5 32 . . . . 5  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( ( ( F  o.  G ) : A -onto-> C  /\  y  e.  C )  ->  E. x  e.  B  y  =  ( F `  x ) ) )
1615impl 378 . . . 4  |-  ( ( ( ( F : B
--> C  /\  G : A
--> B )  /\  ( F  o.  G ) : A -onto-> C )  /\  y  e.  C )  ->  E. x  e.  B  y  =  ( F `  x ) )
1716ralrimiva 2543 . . 3  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  ( F  o.  G ) : A -onto-> C )  ->  A. y  e.  C  E. x  e.  B  y  =  ( F `  x ) )
18173impa 1189 . 2  |-  ( ( F : B --> C  /\  G : A --> B  /\  ( F  o.  G
) : A -onto-> C
)  ->  A. y  e.  C  E. x  e.  B  y  =  ( F `  x ) )
19 dffo3 5643 . 2  |-  ( F : B -onto-> C  <->  ( F : B --> C  /\  A. y  e.  C  E. x  e.  B  y  =  ( F `  x ) ) )
201, 18, 19sylanbrc 415 1  |-  ( ( F : B --> C  /\  G : A --> B  /\  ( F  o.  G
) : A -onto-> C
)  ->  F : B -onto-> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    o. ccom 4615   -->wf 5194   -onto->wfo 5196   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fo 5204  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator