ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divgcdcoprm0 Unicode version

Theorem divgcdcoprm0 11176
Description: Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprm0  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 )

Proof of Theorem divgcdcoprm0
Dummy variables  a  b  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcddvds 11048 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
213adant3 963 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B ) )
3 gcdcl 11051 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
43nn0zd 8836 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
5 simpl 107 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
64, 5jca 300 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  e.  ZZ  /\  A  e.  ZZ )
)
763adant3 963 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ )
)
8 divides 10891 . . . . 5  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  <->  E. a  e.  ZZ  ( a  x.  ( A  gcd  B
) )  =  A ) )
97, 8syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  gcd  B
)  ||  A  <->  E. a  e.  ZZ  ( a  x.  ( A  gcd  B
) )  =  A ) )
10 simpr 108 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  ZZ )
114, 10jca 300 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  e.  ZZ  /\  B  e.  ZZ )
)
12113adant3 963 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  gcd  B
)  e.  ZZ  /\  B  e.  ZZ )
)
13 divides 10891 . . . . 5  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  B  <->  E. b  e.  ZZ  ( b  x.  ( A  gcd  B
) )  =  B ) )
1412, 13syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  gcd  B
)  ||  B  <->  E. b  e.  ZZ  ( b  x.  ( A  gcd  B
) )  =  B ) )
159, 14anbi12d 457 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B )  <->  ( E. a  e.  ZZ  (
a  x.  ( A  gcd  B ) )  =  A  /\  E. b  e.  ZZ  (
b  x.  ( A  gcd  B ) )  =  B ) ) )
16 bezout 11093 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. m  e.  ZZ  E. n  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) ) )
17163adant3 963 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  E. m  e.  ZZ  E. n  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) ) )
18 oveq1 5641 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  (
( a  x.  ( A  gcd  B ) )  x.  m )  =  ( A  x.  m
) )
19 oveq1 5641 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  x.  ( A  gcd  B ) )  =  B  ->  (
( b  x.  ( A  gcd  B ) )  x.  n )  =  ( B  x.  n
) )
2018, 19oveqan12rd 5654 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  x.  ( A  gcd  B ) )  =  B  /\  (
a  x.  ( A  gcd  B ) )  =  A )  -> 
( ( ( a  x.  ( A  gcd  B ) )  x.  m
)  +  ( ( b  x.  ( A  gcd  B ) )  x.  n ) )  =  ( ( A  x.  m )  +  ( B  x.  n
) ) )
2120eqeq2d 2099 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( b  x.  ( A  gcd  B ) )  =  B  /\  (
a  x.  ( A  gcd  B ) )  =  A )  -> 
( ( A  gcd  B )  =  ( ( ( a  x.  ( A  gcd  B ) )  x.  m )  +  ( ( b  x.  ( A  gcd  B
) )  x.  n
) )  <->  ( A  gcd  B )  =  ( ( A  x.  m
)  +  ( B  x.  n ) ) ) )
2221bicomd 139 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b  x.  ( A  gcd  B ) )  =  B  /\  (
a  x.  ( A  gcd  B ) )  =  A )  -> 
( ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) )  <->  ( A  gcd  B )  =  ( ( ( a  x.  ( A  gcd  B
) )  x.  m
)  +  ( ( b  x.  ( A  gcd  B ) )  x.  n ) ) ) )
23 simpl 107 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  a  e.  ZZ )
2423zcnd 8839 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  a  e.  CC )
2524adantl 271 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
a  e.  CC )
263nn0cnd 8698 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  CC )
27263adant3 963 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  ( A  gcd  B )  e.  CC )
2827ad2antrr 472 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( A  gcd  B
)  e.  CC )
29 simpl 107 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  e.  ZZ  /\  n  e.  ZZ )  ->  m  e.  ZZ )
3029zcnd 8839 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( m  e.  ZZ  /\  n  e.  ZZ )  ->  m  e.  CC )
3130ad2antlr 473 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  m  e.  CC )
3225, 28, 31mul32d 7614 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  x.  ( A  gcd  B
) )  x.  m
)  =  ( ( a  x.  m )  x.  ( A  gcd  B ) ) )
33 simpr 108 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  b  e.  ZZ )
3433zcnd 8839 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  b  e.  CC )
3534adantl 271 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
b  e.  CC )
36 simpr 108 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  e.  ZZ  /\  n  e.  ZZ )  ->  n  e.  ZZ )
3736zcnd 8839 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( m  e.  ZZ  /\  n  e.  ZZ )  ->  n  e.  CC )
3837ad2antlr 473 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  n  e.  CC )
3935, 28, 38mul32d 7614 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  ( A  gcd  B
) )  x.  n
)  =  ( ( b  x.  n )  x.  ( A  gcd  B ) ) )
4032, 39oveq12d 5652 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( a  x.  ( A  gcd  B ) )  x.  m
)  +  ( ( b  x.  ( A  gcd  B ) )  x.  n ) )  =  ( ( ( a  x.  m )  x.  ( A  gcd  B ) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) ) )
4140eqeq2d 2099 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( A  gcd  B )  =  ( ( ( a  x.  ( A  gcd  B ) )  x.  m )  +  ( ( b  x.  ( A  gcd  B
) )  x.  n
) )  <->  ( A  gcd  B )  =  ( ( ( a  x.  m )  x.  ( A  gcd  B ) )  +  ( ( b  x.  n )  x.  ( A  gcd  B
) ) ) ) )
4223adantl 271 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
a  e.  ZZ )
4329ad2antlr 473 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  m  e.  ZZ )
4442, 43zmulcld 8844 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( a  x.  m
)  e.  ZZ )
4543adant3 963 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  ( A  gcd  B )  e.  ZZ )
4645ad2antrr 472 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( A  gcd  B
)  e.  ZZ )
4744, 46zmulcld 8844 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  x.  m )  x.  ( A  gcd  B ) )  e.  ZZ )
4833adantl 271 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
b  e.  ZZ )
4936ad2antlr 473 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  n  e.  ZZ )
5048, 49zmulcld 8844 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( b  x.  n
)  e.  ZZ )
5133adant3 963 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  ( A  gcd  B )  e. 
NN0 )
5251ad2antrr 472 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( A  gcd  B
)  e.  NN0 )
5352nn0zd 8836 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( A  gcd  B
)  e.  ZZ )
5450, 53zmulcld 8844 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  n )  x.  ( A  gcd  B ) )  e.  ZZ )
5547, 54zaddcld 8842 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( a  x.  m )  x.  ( A  gcd  B
) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  e.  ZZ )
5655zcnd 8839 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( a  x.  m )  x.  ( A  gcd  B
) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  e.  CC )
57 gcd2n0cl 11054 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  ( A  gcd  B )  e.  NN )
58 nncn 8402 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  gcd  B )  e.  NN  ->  ( A  gcd  B )  e.  CC )
59 nnap0 8423 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  gcd  B )  e.  NN  ->  ( A  gcd  B ) #  0 )
6058, 59jca 300 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  gcd  B )  e.  NN  ->  (
( A  gcd  B
)  e.  CC  /\  ( A  gcd  B ) #  0 ) )
6157, 60syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  gcd  B
)  e.  CC  /\  ( A  gcd  B ) #  0 ) )
6261ad2antrr 472 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( A  gcd  B )  e.  CC  /\  ( A  gcd  B ) #  0 ) )
63 div11ap 8141 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  gcd  B
)  e.  CC  /\  ( ( ( a  x.  m )  x.  ( A  gcd  B
) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  e.  CC  /\  ( ( A  gcd  B )  e.  CC  /\  ( A  gcd  B ) #  0 ) )  -> 
( ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( ( ( a  x.  m )  x.  ( A  gcd  B
) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  /  ( A  gcd  B ) )  <-> 
( A  gcd  B
)  =  ( ( ( a  x.  m
)  x.  ( A  gcd  B ) )  +  ( ( b  x.  n )  x.  ( A  gcd  B
) ) ) ) )
6428, 56, 62, 63syl3anc 1174 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( ( ( a  x.  m )  x.  ( A  gcd  B
) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  /  ( A  gcd  B ) )  <-> 
( A  gcd  B
)  =  ( ( ( a  x.  m
)  x.  ( A  gcd  B ) )  +  ( ( b  x.  n )  x.  ( A  gcd  B
) ) ) ) )
65 dividap 8142 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  gcd  B
)  e.  CC  /\  ( A  gcd  B ) #  0 )  ->  (
( A  gcd  B
)  /  ( A  gcd  B ) )  =  1 )
6662, 65syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( A  gcd  B )  /  ( A  gcd  B ) )  =  1 )
6747zcnd 8839 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  x.  m )  x.  ( A  gcd  B ) )  e.  CC )
6854zcnd 8839 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  n )  x.  ( A  gcd  B ) )  e.  CC )
69 divdirap 8138 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( a  x.  m )  x.  ( A  gcd  B ) )  e.  CC  /\  (
( b  x.  n
)  x.  ( A  gcd  B ) )  e.  CC  /\  (
( A  gcd  B
)  e.  CC  /\  ( A  gcd  B ) #  0 ) )  -> 
( ( ( ( a  x.  m )  x.  ( A  gcd  B ) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  /  ( A  gcd  B ) )  =  ( ( ( ( a  x.  m
)  x.  ( A  gcd  B ) )  /  ( A  gcd  B ) )  +  ( ( ( b  x.  n )  x.  ( A  gcd  B ) )  /  ( A  gcd  B ) ) ) )
7067, 68, 62, 69syl3anc 1174 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( ( a  x.  m )  x.  ( A  gcd  B ) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  /  ( A  gcd  B ) )  =  ( ( ( ( a  x.  m
)  x.  ( A  gcd  B ) )  /  ( A  gcd  B ) )  +  ( ( ( b  x.  n )  x.  ( A  gcd  B ) )  /  ( A  gcd  B ) ) ) )
7144zcnd 8839 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( a  x.  m
)  e.  CC )
7251nn0cnd 8698 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  ( A  gcd  B )  e.  CC )
7372ad2antrr 472 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( A  gcd  B
)  e.  CC )
7462simprd 112 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( A  gcd  B
) #  0 )
7571, 73, 74divcanap4d 8236 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( a  x.  m )  x.  ( A  gcd  B
) )  /  ( A  gcd  B ) )  =  ( a  x.  m ) )
7650zcnd 8839 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( b  x.  n
)  e.  CC )
7776, 28, 74divcanap4d 8236 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( b  x.  n )  x.  ( A  gcd  B
) )  /  ( A  gcd  B ) )  =  ( b  x.  n ) )
7875, 77oveq12d 5652 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( ( a  x.  m )  x.  ( A  gcd  B ) )  /  ( A  gcd  B ) )  +  ( ( ( b  x.  n )  x.  ( A  gcd  B ) )  /  ( A  gcd  B ) ) )  =  ( ( a  x.  m )  +  ( b  x.  n ) ) )
7970, 78eqtrd 2120 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( ( a  x.  m )  x.  ( A  gcd  B ) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  /  ( A  gcd  B ) )  =  ( ( a  x.  m )  +  ( b  x.  n
) ) )
8066, 79eqeq12d 2102 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( ( ( a  x.  m )  x.  ( A  gcd  B
) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  /  ( A  gcd  B ) )  <->  1  =  ( ( a  x.  m )  +  ( b  x.  n ) ) ) )
8141, 64, 803bitr2d 214 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( A  gcd  B )  =  ( ( ( a  x.  ( A  gcd  B ) )  x.  m )  +  ( ( b  x.  ( A  gcd  B
) )  x.  n
) )  <->  1  =  ( ( a  x.  m )  +  ( b  x.  n ) ) ) )
8222, 81sylan9bbr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  (
( A  gcd  B
)  =  ( ( A  x.  m )  +  ( B  x.  n ) )  <->  1  =  ( ( a  x.  m )  +  ( b  x.  n ) ) ) )
83 eqcom 2090 . . . . . . . . . . . . . . . . . 18  |-  ( 1  =  ( ( a  x.  m )  +  ( b  x.  n
) )  <->  ( (
a  x.  m )  +  ( b  x.  n ) )  =  1 )
84 simpr 108 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  ( m  e.  ZZ  /\  n  e.  ZZ ) )
8584anim1i 333 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( m  e.  ZZ  /\  n  e.  ZZ )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )
8685ancomd 263 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
) )
87 bezoutr1 11115 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( ( ( a  x.  m )  +  ( b  x.  n
) )  =  1  ->  ( a  gcd  b )  =  1 ) )
8886, 87syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( a  x.  m )  +  ( b  x.  n
) )  =  1  ->  ( a  gcd  b )  =  1 ) )
8988adantr 270 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  (
( ( a  x.  m )  +  ( b  x.  n ) )  =  1  -> 
( a  gcd  b
)  =  1 ) )
9083, 89syl5bi 150 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  (
1  =  ( ( a  x.  m )  +  ( b  x.  n ) )  -> 
( a  gcd  b
)  =  1 ) )
91 simpll1 982 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  A  e.  ZZ )
9291zcnd 8839 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  A  e.  CC )
93 divmulap3 8118 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  a  e.  CC  /\  (
( A  gcd  B
)  e.  CC  /\  ( A  gcd  B ) #  0 ) )  -> 
( ( A  / 
( A  gcd  B
) )  =  a  <-> 
A  =  ( a  x.  ( A  gcd  B ) ) ) )
9492, 25, 62, 93syl3anc 1174 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( A  / 
( A  gcd  B
) )  =  a  <-> 
A  =  ( a  x.  ( A  gcd  B ) ) ) )
95 eqcom 2090 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( a  =  ( A  / 
( A  gcd  B
) )  <->  ( A  /  ( A  gcd  B ) )  =  a )
96 eqcom 2090 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( a  x.  ( A  gcd  B ) )  =  A  <->  A  =  ( a  x.  ( A  gcd  B ) ) )
9794, 95, 963bitr4g 221 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( a  =  ( A  /  ( A  gcd  B ) )  <-> 
( a  x.  ( A  gcd  B ) )  =  A ) )
9897biimprd 156 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  x.  ( A  gcd  B
) )  =  A  ->  a  =  ( A  /  ( A  gcd  B ) ) ) )
9998a1d 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  a  =  ( A  /  ( A  gcd  B ) ) ) ) )
10099imp32 253 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  a  =  ( A  / 
( A  gcd  B
) ) )
101 simp2 944 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  ZZ )
102101zcnd 8839 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  CC )
103102ad2antrr 472 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  B  e.  CC )
104 divmulap3 8118 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( B  e.  CC  /\  b  e.  CC  /\  (
( A  gcd  B
)  e.  CC  /\  ( A  gcd  B ) #  0 ) )  -> 
( ( B  / 
( A  gcd  B
) )  =  b  <-> 
B  =  ( b  x.  ( A  gcd  B ) ) ) )
105103, 35, 62, 104syl3anc 1174 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( B  / 
( A  gcd  B
) )  =  b  <-> 
B  =  ( b  x.  ( A  gcd  B ) ) ) )
106 eqcom 2090 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  =  ( B  / 
( A  gcd  B
) )  <->  ( B  /  ( A  gcd  B ) )  =  b )
107 eqcom 2090 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( b  x.  ( A  gcd  B ) )  =  B  <->  B  =  ( b  x.  ( A  gcd  B ) ) )
108105, 106, 1073bitr4g 221 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( b  =  ( B  /  ( A  gcd  B ) )  <-> 
( b  x.  ( A  gcd  B ) )  =  B ) )
109108biimprd 156 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  ( A  gcd  B
) )  =  B  ->  b  =  ( B  /  ( A  gcd  B ) ) ) )
110109a1dd 47 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  b  =  ( B  /  ( A  gcd  B ) ) ) ) )
111110imp32 253 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  b  =  ( B  / 
( A  gcd  B
) ) )
112100, 111oveq12d 5652 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  (
a  gcd  b )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) ) )
113112eqeq1d 2096 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  (
( a  gcd  b
)  =  1  <->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 ) )
11490, 113sylibd 147 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  (
1  =  ( ( a  x.  m )  +  ( b  x.  n ) )  -> 
( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) )
11582, 114sylbid 148 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  (
( A  gcd  B
)  =  ( ( A  x.  m )  +  ( B  x.  n ) )  -> 
( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) )
116115exp32 357 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  ( ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) )  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) ) )
117116com34 82 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) )  ->  ( (
a  x.  ( A  gcd  B ) )  =  A  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 ) ) ) )
118117com23 77 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) )  -> 
( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) ) )
119118ex 113 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  ( (
a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) )  -> 
( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) ) ) )
120119com23 77 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  ( ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) )  ->  ( (
a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) ) ) )
121120rexlimdvva 2496 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  ( E. m  e.  ZZ  E. n  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) )  ->  ( (
a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) ) ) )
12217, 121mpd 13 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( b  x.  ( A  gcd  B ) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) ) )
123122impl 372 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( b  x.  ( A  gcd  B ) )  =  B  ->  (
( a  x.  ( A  gcd  B ) )  =  A  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 ) ) )
124123rexlimdva 2489 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  a  e.  ZZ )  ->  ( E. b  e.  ZZ  ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) )
125124com23 77 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  a  e.  ZZ )  ->  ( ( a  x.  ( A  gcd  B
) )  =  A  ->  ( E. b  e.  ZZ  ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) )
126125rexlimdva 2489 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  ( E. a  e.  ZZ  ( a  x.  ( A  gcd  B ) )  =  A  ->  ( E. b  e.  ZZ  ( b  x.  ( A  gcd  B ) )  =  B  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 ) ) )
127126impd 251 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( E. a  e.  ZZ  ( a  x.  ( A  gcd  B
) )  =  A  /\  E. b  e.  ZZ  ( b  x.  ( A  gcd  B
) )  =  B )  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) )
12815, 127sylbid 148 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B )  -> 
( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) )
1292, 128mpd 13 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    = wceq 1289    e. wcel 1438    =/= wne 2255   E.wrex 2360   class class class wbr 3837  (class class class)co 5634   CCcc 7327   0cc0 7329   1c1 7330    + caddc 7332    x. cmul 7334   # cap 8034    / cdiv 8113   NNcn 8394   NN0cn0 8643   ZZcz 8720    || cdvds 10889    gcd cgcd 11031
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443  ax-caucvg 7444
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-sup 6658  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-n0 8644  df-z 8721  df-uz 8989  df-q 9074  df-rp 9104  df-fz 9394  df-fzo 9519  df-fl 9642  df-mod 9695  df-iseq 9818  df-seq3 9819  df-exp 9920  df-cj 10241  df-re 10242  df-im 10243  df-rsqrt 10396  df-abs 10397  df-dvds 10890  df-gcd 11032
This theorem is referenced by:  divgcdcoprmex  11177
  Copyright terms: Public domain W3C validator