ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divgcdcoprm0 Unicode version

Theorem divgcdcoprm0 12103
Description: Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprm0  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 )

Proof of Theorem divgcdcoprm0
Dummy variables  a  b  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcddvds 11966 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
213adant3 1017 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B ) )
3 gcdcl 11969 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
43nn0zd 9375 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
5 simpl 109 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
64, 5jca 306 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  e.  ZZ  /\  A  e.  ZZ )
)
763adant3 1017 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ )
)
8 divides 11798 . . . . 5  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  <->  E. a  e.  ZZ  ( a  x.  ( A  gcd  B
) )  =  A ) )
97, 8syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  gcd  B
)  ||  A  <->  E. a  e.  ZZ  ( a  x.  ( A  gcd  B
) )  =  A ) )
10 simpr 110 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  ZZ )
114, 10jca 306 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  e.  ZZ  /\  B  e.  ZZ )
)
12113adant3 1017 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  gcd  B
)  e.  ZZ  /\  B  e.  ZZ )
)
13 divides 11798 . . . . 5  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  B  <->  E. b  e.  ZZ  ( b  x.  ( A  gcd  B
) )  =  B ) )
1412, 13syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  gcd  B
)  ||  B  <->  E. b  e.  ZZ  ( b  x.  ( A  gcd  B
) )  =  B ) )
159, 14anbi12d 473 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B )  <->  ( E. a  e.  ZZ  (
a  x.  ( A  gcd  B ) )  =  A  /\  E. b  e.  ZZ  (
b  x.  ( A  gcd  B ) )  =  B ) ) )
16 bezout 12014 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. m  e.  ZZ  E. n  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) ) )
17163adant3 1017 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  E. m  e.  ZZ  E. n  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) ) )
18 oveq1 5884 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  (
( a  x.  ( A  gcd  B ) )  x.  m )  =  ( A  x.  m
) )
19 oveq1 5884 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  x.  ( A  gcd  B ) )  =  B  ->  (
( b  x.  ( A  gcd  B ) )  x.  n )  =  ( B  x.  n
) )
2018, 19oveqan12rd 5897 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  x.  ( A  gcd  B ) )  =  B  /\  (
a  x.  ( A  gcd  B ) )  =  A )  -> 
( ( ( a  x.  ( A  gcd  B ) )  x.  m
)  +  ( ( b  x.  ( A  gcd  B ) )  x.  n ) )  =  ( ( A  x.  m )  +  ( B  x.  n
) ) )
2120eqeq2d 2189 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( b  x.  ( A  gcd  B ) )  =  B  /\  (
a  x.  ( A  gcd  B ) )  =  A )  -> 
( ( A  gcd  B )  =  ( ( ( a  x.  ( A  gcd  B ) )  x.  m )  +  ( ( b  x.  ( A  gcd  B
) )  x.  n
) )  <->  ( A  gcd  B )  =  ( ( A  x.  m
)  +  ( B  x.  n ) ) ) )
2221bicomd 141 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b  x.  ( A  gcd  B ) )  =  B  /\  (
a  x.  ( A  gcd  B ) )  =  A )  -> 
( ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) )  <->  ( A  gcd  B )  =  ( ( ( a  x.  ( A  gcd  B
) )  x.  m
)  +  ( ( b  x.  ( A  gcd  B ) )  x.  n ) ) ) )
23 simpl 109 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  a  e.  ZZ )
2423zcnd 9378 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  a  e.  CC )
2524adantl 277 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
a  e.  CC )
263nn0cnd 9233 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  CC )
27263adant3 1017 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  ( A  gcd  B )  e.  CC )
2827ad2antrr 488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( A  gcd  B
)  e.  CC )
29 simpl 109 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  e.  ZZ  /\  n  e.  ZZ )  ->  m  e.  ZZ )
3029zcnd 9378 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( m  e.  ZZ  /\  n  e.  ZZ )  ->  m  e.  CC )
3130ad2antlr 489 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  m  e.  CC )
3225, 28, 31mul32d 8112 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  x.  ( A  gcd  B
) )  x.  m
)  =  ( ( a  x.  m )  x.  ( A  gcd  B ) ) )
33 simpr 110 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  b  e.  ZZ )
3433zcnd 9378 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  b  e.  CC )
3534adantl 277 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
b  e.  CC )
36 simpr 110 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  e.  ZZ  /\  n  e.  ZZ )  ->  n  e.  ZZ )
3736zcnd 9378 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( m  e.  ZZ  /\  n  e.  ZZ )  ->  n  e.  CC )
3837ad2antlr 489 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  n  e.  CC )
3935, 28, 38mul32d 8112 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  ( A  gcd  B
) )  x.  n
)  =  ( ( b  x.  n )  x.  ( A  gcd  B ) ) )
4032, 39oveq12d 5895 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( a  x.  ( A  gcd  B ) )  x.  m
)  +  ( ( b  x.  ( A  gcd  B ) )  x.  n ) )  =  ( ( ( a  x.  m )  x.  ( A  gcd  B ) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) ) )
4140eqeq2d 2189 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( A  gcd  B )  =  ( ( ( a  x.  ( A  gcd  B ) )  x.  m )  +  ( ( b  x.  ( A  gcd  B
) )  x.  n
) )  <->  ( A  gcd  B )  =  ( ( ( a  x.  m )  x.  ( A  gcd  B ) )  +  ( ( b  x.  n )  x.  ( A  gcd  B
) ) ) ) )
4223adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
a  e.  ZZ )
4329ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  m  e.  ZZ )
4442, 43zmulcld 9383 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( a  x.  m
)  e.  ZZ )
4543adant3 1017 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  ( A  gcd  B )  e.  ZZ )
4645ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( A  gcd  B
)  e.  ZZ )
4744, 46zmulcld 9383 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  x.  m )  x.  ( A  gcd  B ) )  e.  ZZ )
4833adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
b  e.  ZZ )
4936ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  n  e.  ZZ )
5048, 49zmulcld 9383 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( b  x.  n
)  e.  ZZ )
5133adant3 1017 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  ( A  gcd  B )  e. 
NN0 )
5251ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( A  gcd  B
)  e.  NN0 )
5352nn0zd 9375 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( A  gcd  B
)  e.  ZZ )
5450, 53zmulcld 9383 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  n )  x.  ( A  gcd  B ) )  e.  ZZ )
5547, 54zaddcld 9381 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( a  x.  m )  x.  ( A  gcd  B
) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  e.  ZZ )
5655zcnd 9378 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( a  x.  m )  x.  ( A  gcd  B
) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  e.  CC )
57 gcd2n0cl 11972 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  ( A  gcd  B )  e.  NN )
58 nncn 8929 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  gcd  B )  e.  NN  ->  ( A  gcd  B )  e.  CC )
59 nnap0 8950 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  gcd  B )  e.  NN  ->  ( A  gcd  B ) #  0 )
6058, 59jca 306 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  gcd  B )  e.  NN  ->  (
( A  gcd  B
)  e.  CC  /\  ( A  gcd  B ) #  0 ) )
6157, 60syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  gcd  B
)  e.  CC  /\  ( A  gcd  B ) #  0 ) )
6261ad2antrr 488 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( A  gcd  B )  e.  CC  /\  ( A  gcd  B ) #  0 ) )
63 div11ap 8659 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  gcd  B
)  e.  CC  /\  ( ( ( a  x.  m )  x.  ( A  gcd  B
) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  e.  CC  /\  ( ( A  gcd  B )  e.  CC  /\  ( A  gcd  B ) #  0 ) )  -> 
( ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( ( ( a  x.  m )  x.  ( A  gcd  B
) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  /  ( A  gcd  B ) )  <-> 
( A  gcd  B
)  =  ( ( ( a  x.  m
)  x.  ( A  gcd  B ) )  +  ( ( b  x.  n )  x.  ( A  gcd  B
) ) ) ) )
6428, 56, 62, 63syl3anc 1238 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( ( ( a  x.  m )  x.  ( A  gcd  B
) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  /  ( A  gcd  B ) )  <-> 
( A  gcd  B
)  =  ( ( ( a  x.  m
)  x.  ( A  gcd  B ) )  +  ( ( b  x.  n )  x.  ( A  gcd  B
) ) ) ) )
65 dividap 8660 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  gcd  B
)  e.  CC  /\  ( A  gcd  B ) #  0 )  ->  (
( A  gcd  B
)  /  ( A  gcd  B ) )  =  1 )
6662, 65syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( A  gcd  B )  /  ( A  gcd  B ) )  =  1 )
6747zcnd 9378 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  x.  m )  x.  ( A  gcd  B ) )  e.  CC )
6854zcnd 9378 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  n )  x.  ( A  gcd  B ) )  e.  CC )
69 divdirap 8656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( a  x.  m )  x.  ( A  gcd  B ) )  e.  CC  /\  (
( b  x.  n
)  x.  ( A  gcd  B ) )  e.  CC  /\  (
( A  gcd  B
)  e.  CC  /\  ( A  gcd  B ) #  0 ) )  -> 
( ( ( ( a  x.  m )  x.  ( A  gcd  B ) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  /  ( A  gcd  B ) )  =  ( ( ( ( a  x.  m
)  x.  ( A  gcd  B ) )  /  ( A  gcd  B ) )  +  ( ( ( b  x.  n )  x.  ( A  gcd  B ) )  /  ( A  gcd  B ) ) ) )
7067, 68, 62, 69syl3anc 1238 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( ( a  x.  m )  x.  ( A  gcd  B ) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  /  ( A  gcd  B ) )  =  ( ( ( ( a  x.  m
)  x.  ( A  gcd  B ) )  /  ( A  gcd  B ) )  +  ( ( ( b  x.  n )  x.  ( A  gcd  B ) )  /  ( A  gcd  B ) ) ) )
7144zcnd 9378 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( a  x.  m
)  e.  CC )
7251nn0cnd 9233 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  ( A  gcd  B )  e.  CC )
7372ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( A  gcd  B
)  e.  CC )
7462simprd 114 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( A  gcd  B
) #  0 )
7571, 73, 74divcanap4d 8755 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( a  x.  m )  x.  ( A  gcd  B
) )  /  ( A  gcd  B ) )  =  ( a  x.  m ) )
7650zcnd 9378 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( b  x.  n
)  e.  CC )
7776, 28, 74divcanap4d 8755 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( b  x.  n )  x.  ( A  gcd  B
) )  /  ( A  gcd  B ) )  =  ( b  x.  n ) )
7875, 77oveq12d 5895 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( ( a  x.  m )  x.  ( A  gcd  B ) )  /  ( A  gcd  B ) )  +  ( ( ( b  x.  n )  x.  ( A  gcd  B ) )  /  ( A  gcd  B ) ) )  =  ( ( a  x.  m )  +  ( b  x.  n ) ) )
7970, 78eqtrd 2210 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( ( a  x.  m )  x.  ( A  gcd  B ) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  /  ( A  gcd  B ) )  =  ( ( a  x.  m )  +  ( b  x.  n
) ) )
8066, 79eqeq12d 2192 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( ( ( a  x.  m )  x.  ( A  gcd  B
) )  +  ( ( b  x.  n
)  x.  ( A  gcd  B ) ) )  /  ( A  gcd  B ) )  <->  1  =  ( ( a  x.  m )  +  ( b  x.  n ) ) ) )
8141, 64, 803bitr2d 216 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( A  gcd  B )  =  ( ( ( a  x.  ( A  gcd  B ) )  x.  m )  +  ( ( b  x.  ( A  gcd  B
) )  x.  n
) )  <->  1  =  ( ( a  x.  m )  +  ( b  x.  n ) ) ) )
8222, 81sylan9bbr 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  (
( A  gcd  B
)  =  ( ( A  x.  m )  +  ( B  x.  n ) )  <->  1  =  ( ( a  x.  m )  +  ( b  x.  n ) ) ) )
83 eqcom 2179 . . . . . . . . . . . . . . . . . 18  |-  ( 1  =  ( ( a  x.  m )  +  ( b  x.  n
) )  <->  ( (
a  x.  m )  +  ( b  x.  n ) )  =  1 )
84 simpr 110 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  ( m  e.  ZZ  /\  n  e.  ZZ ) )
8584anim1i 340 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( m  e.  ZZ  /\  n  e.  ZZ )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )
8685ancomd 267 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
) )
87 bezoutr1 12036 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( ( ( a  x.  m )  +  ( b  x.  n
) )  =  1  ->  ( a  gcd  b )  =  1 ) )
8886, 87syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( a  x.  m )  +  ( b  x.  n
) )  =  1  ->  ( a  gcd  b )  =  1 ) )
8988adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  (
( ( a  x.  m )  +  ( b  x.  n ) )  =  1  -> 
( a  gcd  b
)  =  1 ) )
9083, 89biimtrid 152 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  (
1  =  ( ( a  x.  m )  +  ( b  x.  n ) )  -> 
( a  gcd  b
)  =  1 ) )
91 simpll1 1036 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  A  e.  ZZ )
9291zcnd 9378 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  A  e.  CC )
93 divmulap3 8636 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  a  e.  CC  /\  (
( A  gcd  B
)  e.  CC  /\  ( A  gcd  B ) #  0 ) )  -> 
( ( A  / 
( A  gcd  B
) )  =  a  <-> 
A  =  ( a  x.  ( A  gcd  B ) ) ) )
9492, 25, 62, 93syl3anc 1238 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( A  / 
( A  gcd  B
) )  =  a  <-> 
A  =  ( a  x.  ( A  gcd  B ) ) ) )
95 eqcom 2179 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( a  =  ( A  / 
( A  gcd  B
) )  <->  ( A  /  ( A  gcd  B ) )  =  a )
96 eqcom 2179 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( a  x.  ( A  gcd  B ) )  =  A  <->  A  =  ( a  x.  ( A  gcd  B ) ) )
9794, 95, 963bitr4g 223 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( a  =  ( A  /  ( A  gcd  B ) )  <-> 
( a  x.  ( A  gcd  B ) )  =  A ) )
9897biimprd 158 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  x.  ( A  gcd  B
) )  =  A  ->  a  =  ( A  /  ( A  gcd  B ) ) ) )
9998a1d 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  a  =  ( A  /  ( A  gcd  B ) ) ) ) )
10099imp32 257 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  a  =  ( A  / 
( A  gcd  B
) ) )
101 simp2 998 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  ZZ )
102101zcnd 9378 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  CC )
103102ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  B  e.  CC )
104 divmulap3 8636 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( B  e.  CC  /\  b  e.  CC  /\  (
( A  gcd  B
)  e.  CC  /\  ( A  gcd  B ) #  0 ) )  -> 
( ( B  / 
( A  gcd  B
) )  =  b  <-> 
B  =  ( b  x.  ( A  gcd  B ) ) ) )
105103, 35, 62, 104syl3anc 1238 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( B  / 
( A  gcd  B
) )  =  b  <-> 
B  =  ( b  x.  ( A  gcd  B ) ) ) )
106 eqcom 2179 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  =  ( B  / 
( A  gcd  B
) )  <->  ( B  /  ( A  gcd  B ) )  =  b )
107 eqcom 2179 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( b  x.  ( A  gcd  B ) )  =  B  <->  B  =  ( b  x.  ( A  gcd  B ) ) )
108105, 106, 1073bitr4g 223 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( b  =  ( B  /  ( A  gcd  B ) )  <-> 
( b  x.  ( A  gcd  B ) )  =  B ) )
109108biimprd 158 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  ( A  gcd  B
) )  =  B  ->  b  =  ( B  /  ( A  gcd  B ) ) ) )
110109a1dd 48 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  b  =  ( B  /  ( A  gcd  B ) ) ) ) )
111110imp32 257 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  b  =  ( B  / 
( A  gcd  B
) ) )
112100, 111oveq12d 5895 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  (
a  gcd  b )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) ) )
113112eqeq1d 2186 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  (
( a  gcd  b
)  =  1  <->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 ) )
11490, 113sylibd 149 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  (
1  =  ( ( a  x.  m )  +  ( b  x.  n ) )  -> 
( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) )
11582, 114sylbid 150 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( ( b  x.  ( A  gcd  B
) )  =  B  /\  ( a  x.  ( A  gcd  B
) )  =  A ) )  ->  (
( A  gcd  B
)  =  ( ( A  x.  m )  +  ( B  x.  n ) )  -> 
( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) )
116115exp32 365 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  ( ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) )  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) ) )
117116com34 83 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) )  ->  ( (
a  x.  ( A  gcd  B ) )  =  A  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 ) ) ) )
118117com23 78 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) )  -> 
( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) ) )
119118ex 115 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  ( (
a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) )  -> 
( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) ) ) )
120119com23 78 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  ( ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) )  ->  ( (
a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) ) ) )
121120rexlimdvva 2602 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  ( E. m  e.  ZZ  E. n  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  m )  +  ( B  x.  n ) )  ->  ( (
a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) ) ) )
12217, 121mpd 13 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( b  x.  ( A  gcd  B ) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) ) )
123122impl 380 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( b  x.  ( A  gcd  B ) )  =  B  ->  (
( a  x.  ( A  gcd  B ) )  =  A  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 ) ) )
124123rexlimdva 2594 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  a  e.  ZZ )  ->  ( E. b  e.  ZZ  ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( a  x.  ( A  gcd  B ) )  =  A  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) )
125124com23 78 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  /\  a  e.  ZZ )  ->  ( ( a  x.  ( A  gcd  B
) )  =  A  ->  ( E. b  e.  ZZ  ( b  x.  ( A  gcd  B
) )  =  B  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) ) )
126125rexlimdva 2594 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  ( E. a  e.  ZZ  ( a  x.  ( A  gcd  B ) )  =  A  ->  ( E. b  e.  ZZ  ( b  x.  ( A  gcd  B ) )  =  B  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 ) ) )
127126impd 254 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( E. a  e.  ZZ  ( a  x.  ( A  gcd  B
) )  =  A  /\  E. b  e.  ZZ  ( b  x.  ( A  gcd  B
) )  =  B )  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) )
12815, 127sylbid 150 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B )  -> 
( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 ) )
1292, 128mpd 13 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   E.wrex 2456   class class class wbr 4005  (class class class)co 5877   CCcc 7811   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818   # cap 8540    / cdiv 8631   NNcn 8921   NN0cn0 9178   ZZcz 9255    || cdvds 11796    gcd cgcd 11945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-sup 6985  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946
This theorem is referenced by:  divgcdcoprmex  12104
  Copyright terms: Public domain W3C validator