ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem1prl Unicode version

Theorem distrlem1prl 7514
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem1prl  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )

Proof of Theorem distrlem1prl
Dummy variables  x  y  z  w  v  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7469 . . . . 5  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
2 df-imp 7401 . . . . . 6  |-  .P.  =  ( y  e.  P. ,  z  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  y )  /\  h  e.  ( 1st `  z
)  /\  f  =  ( g  .Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  y )  /\  h  e.  ( 2nd `  z
)  /\  f  =  ( g  .Q  h
) ) } >. )
3 mulclnq 7308 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
42, 3genpelvl 7444 . . . . 5  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  E. x  e.  ( 1st `  A
) E. v  e.  ( 1st `  ( B  +P.  C ) ) w  =  ( x  .Q  v ) ) )
51, 4sylan2 284 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  C  e.  P. )
)  ->  ( w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  E. x  e.  ( 1st `  A
) E. v  e.  ( 1st `  ( B  +P.  C ) ) w  =  ( x  .Q  v ) ) )
653impb 1188 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  E. x  e.  ( 1st `  A ) E. v  e.  ( 1st `  ( B  +P.  C ) ) w  =  ( x  .Q  v ) ) )
7 df-iplp 7400 . . . . . . . . . . 11  |-  +P.  =  ( w  e.  P. ,  x  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  w )  /\  h  e.  ( 1st `  x
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  w )  /\  h  e.  ( 2nd `  x
)  /\  f  =  ( g  +Q  h
) ) } >. )
8 addclnq 7307 . . . . . . . . . . 11  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
97, 8genpelvl 7444 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( v  e.  ( 1st `  ( B  +P.  C ) )  <->  E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  C ) v  =  ( y  +Q  z
) ) )
1093adant1 1004 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( 1st `  ( B  +P.  C
) )  <->  E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  C
) v  =  ( y  +Q  z ) ) )
1110adantr 274 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  (
v  e.  ( 1st `  ( B  +P.  C
) )  <->  E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  C
) v  =  ( y  +Q  z ) ) )
12 prop 7407 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
13 elprnql 7413 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
1412, 13sylan 281 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
15143ad2antl1 1148 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
1615adantrr 471 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  x  e.  Q. )
1716adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  ->  x  e.  Q. )
18 prop 7407 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
19 elprnql 7413 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
2018, 19sylan 281 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
21 prop 7407 . . . . . . . . . . . . . . . . . 18  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
22 elprnql 7413 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  z  e.  ( 1st `  C ) )  -> 
z  e.  Q. )
2321, 22sylan 281 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  P.  /\  z  e.  ( 1st `  C ) )  -> 
z  e.  Q. )
2420, 23anim12i 336 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  /\  ( C  e.  P.  /\  z  e.  ( 1st `  C ) ) )  ->  ( y  e. 
Q.  /\  z  e.  Q. ) )
2524an4s 578 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  P.  /\  C  e.  P. )  /\  ( y  e.  ( 1st `  B )  /\  z  e.  ( 1st `  C ) ) )  ->  (
y  e.  Q.  /\  z  e.  Q. )
)
26253adantl1 1142 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( y  e.  ( 1st `  B )  /\  z  e.  ( 1st `  C ) ) )  ->  (
y  e.  Q.  /\  z  e.  Q. )
)
2726ad2ant2r 501 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( y  e.  Q.  /\  z  e.  Q. )
)
28 3anass 971 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  <->  ( x  e.  Q.  /\  ( y  e.  Q.  /\  z  e.  Q. ) ) )
2917, 27, 28sylanbrc 414 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )
)
30 simprr 522 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  w  =  ( x  .Q  v ) )
31 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( 1st `  B )  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) )  ->  v  =  ( y  +Q  z ) )
3230, 31anim12i 336 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) ) )
33 oveq2 5844 . . . . . . . . . . . . . . 15  |-  ( v  =  ( y  +Q  z )  ->  (
x  .Q  v )  =  ( x  .Q  ( y  +Q  z
) ) )
3433eqeq2d 2176 . . . . . . . . . . . . . 14  |-  ( v  =  ( y  +Q  z )  ->  (
w  =  ( x  .Q  v )  <->  w  =  ( x  .Q  (
y  +Q  z ) ) ) )
3534biimpac 296 . . . . . . . . . . . . 13  |-  ( ( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( x  .Q  ( y  +Q  z
) ) )
36 distrnqg 7319 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  .Q  ( y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( x  .Q  z
) ) )
3736eqeq2d 2176 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
w  =  ( x  .Q  ( y  +Q  z ) )  <->  w  =  ( ( x  .Q  y )  +Q  (
x  .Q  z ) ) ) )
3835, 37syl5ib 153 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( ( x  .Q  y )  +Q  (
x  .Q  z ) ) ) )
3929, 32, 38sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  ->  w  =  ( (
x  .Q  y )  +Q  ( x  .Q  z ) ) )
40 mulclpr 7504 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
41403adant3 1006 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
4241ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( A  .P.  B
)  e.  P. )
43 mulclpr 7504 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
44433adant2 1005 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
4544ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( A  .P.  C
)  e.  P. )
46 simpll 519 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( 1st `  B )  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) )  ->  y  e.  ( 1st `  B
) )
472, 3genpprecll 7446 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  ->  ( x  .Q  y )  e.  ( 1st `  ( A  .P.  B ) ) ) )
48473adant3 1006 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  ->  ( x  .Q  y )  e.  ( 1st `  ( A  .P.  B ) ) ) )
4948impl 378 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  ( 1st `  A ) )  /\  y  e.  ( 1st `  B
) )  ->  (
x  .Q  y )  e.  ( 1st `  ( A  .P.  B ) ) )
5049adantlrr 475 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  y  e.  ( 1st `  B ) )  -> 
( x  .Q  y
)  e.  ( 1st `  ( A  .P.  B
) ) )
5146, 50sylan2 284 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( x  .Q  y
)  e.  ( 1st `  ( A  .P.  B
) ) )
52 simplr 520 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( 1st `  B )  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) )  ->  z  e.  ( 1st `  C
) )
532, 3genpprecll 7446 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( x  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) )  ->  ( x  .Q  z )  e.  ( 1st `  ( A  .P.  C ) ) ) )
54533adant2 1005 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  ( 1st `  A )  /\  z  e.  ( 1st `  C ) )  ->  ( x  .Q  z )  e.  ( 1st `  ( A  .P.  C ) ) ) )
5554impl 378 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  ( 1st `  A ) )  /\  z  e.  ( 1st `  C
) )  ->  (
x  .Q  z )  e.  ( 1st `  ( A  .P.  C ) ) )
5655adantlrr 475 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  z  e.  ( 1st `  C ) )  -> 
( x  .Q  z
)  e.  ( 1st `  ( A  .P.  C
) ) )
5752, 56sylan2 284 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( x  .Q  z
)  e.  ( 1st `  ( A  .P.  C
) ) )
587, 8genpprecll 7446 . . . . . . . . . . . . 13  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( ( ( x  .Q  y )  e.  ( 1st `  ( A  .P.  B ) )  /\  ( x  .Q  z )  e.  ( 1st `  ( A  .P.  C ) ) )  ->  ( (
x  .Q  y )  +Q  ( x  .Q  z ) )  e.  ( 1st `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) )
5958imp 123 . . . . . . . . . . . 12  |-  ( ( ( ( A  .P.  B )  e.  P.  /\  ( A  .P.  C )  e.  P. )  /\  ( ( x  .Q  y )  e.  ( 1st `  ( A  .P.  B ) )  /\  ( x  .Q  z )  e.  ( 1st `  ( A  .P.  C ) ) ) )  ->  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  e.  ( 1st `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) )
6042, 45, 51, 57, 59syl22anc 1228 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
6139, 60eqeltrd 2241 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  ->  w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
6261exp32 363 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  (
( y  e.  ( 1st `  B )  /\  z  e.  ( 1st `  C ) )  ->  ( v  =  ( y  +Q  z )  ->  w  e.  ( 1st `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) ) )
6362rexlimdvv 2588 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  ( E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  C ) v  =  ( y  +Q  z
)  ->  w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
6411, 63sylbid 149 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  (
v  e.  ( 1st `  ( B  +P.  C
) )  ->  w  e.  ( 1st `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) )
6564exp32 363 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  ( 1st `  A )  ->  (
w  =  ( x  .Q  v )  -> 
( v  e.  ( 1st `  ( B  +P.  C ) )  ->  w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) ) )
6665com34 83 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  ( 1st `  A )  ->  (
v  e.  ( 1st `  ( B  +P.  C
) )  ->  (
w  =  ( x  .Q  v )  ->  w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) ) )
6766impd 252 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  ( 1st `  A )  /\  v  e.  ( 1st `  ( B  +P.  C ) ) )  ->  ( w  =  ( x  .Q  v )  ->  w  e.  ( 1st `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) ) )
6867rexlimdvv 2588 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. x  e.  ( 1st `  A ) E. v  e.  ( 1st `  ( B  +P.  C
) ) w  =  ( x  .Q  v
)  ->  w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
696, 68sylbid 149 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  ->  w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
7069ssrdv 3143 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 967    = wceq 1342    e. wcel 2135   E.wrex 2443    C_ wss 3111   <.cop 3573   ` cfv 5182  (class class class)co 5836   1stc1st 6098   2ndc2nd 6099   Q.cnq 7212    +Q cplq 7214    .Q cmq 7215   P.cnp 7223    +P. cpp 7225    .P. cmp 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-2o 6376  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-mpq 7277  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-mqqs 7282  df-1nqqs 7283  df-rq 7284  df-ltnqqs 7285  df-enq0 7356  df-nq0 7357  df-0nq0 7358  df-plq0 7359  df-mq0 7360  df-inp 7398  df-iplp 7400  df-imp 7401
This theorem is referenced by:  distrprg  7520
  Copyright terms: Public domain W3C validator