ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem1prl Unicode version

Theorem distrlem1prl 7649
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem1prl  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )

Proof of Theorem distrlem1prl
Dummy variables  x  y  z  w  v  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7604 . . . . 5  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
2 df-imp 7536 . . . . . 6  |-  .P.  =  ( y  e.  P. ,  z  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  y )  /\  h  e.  ( 1st `  z
)  /\  f  =  ( g  .Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  y )  /\  h  e.  ( 2nd `  z
)  /\  f  =  ( g  .Q  h
) ) } >. )
3 mulclnq 7443 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
42, 3genpelvl 7579 . . . . 5  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  E. x  e.  ( 1st `  A
) E. v  e.  ( 1st `  ( B  +P.  C ) ) w  =  ( x  .Q  v ) ) )
51, 4sylan2 286 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  C  e.  P. )
)  ->  ( w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  E. x  e.  ( 1st `  A
) E. v  e.  ( 1st `  ( B  +P.  C ) ) w  =  ( x  .Q  v ) ) )
653impb 1201 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  E. x  e.  ( 1st `  A ) E. v  e.  ( 1st `  ( B  +P.  C ) ) w  =  ( x  .Q  v ) ) )
7 df-iplp 7535 . . . . . . . . . . 11  |-  +P.  =  ( w  e.  P. ,  x  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  w )  /\  h  e.  ( 1st `  x
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  w )  /\  h  e.  ( 2nd `  x
)  /\  f  =  ( g  +Q  h
) ) } >. )
8 addclnq 7442 . . . . . . . . . . 11  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
97, 8genpelvl 7579 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( v  e.  ( 1st `  ( B  +P.  C ) )  <->  E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  C ) v  =  ( y  +Q  z
) ) )
1093adant1 1017 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( 1st `  ( B  +P.  C
) )  <->  E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  C
) v  =  ( y  +Q  z ) ) )
1110adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  (
v  e.  ( 1st `  ( B  +P.  C
) )  <->  E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  C
) v  =  ( y  +Q  z ) ) )
12 prop 7542 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
13 elprnql 7548 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
1412, 13sylan 283 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
15143ad2antl1 1161 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
1615adantrr 479 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  x  e.  Q. )
1716adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  ->  x  e.  Q. )
18 prop 7542 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
19 elprnql 7548 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
2018, 19sylan 283 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
21 prop 7542 . . . . . . . . . . . . . . . . . 18  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
22 elprnql 7548 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  z  e.  ( 1st `  C ) )  -> 
z  e.  Q. )
2321, 22sylan 283 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  P.  /\  z  e.  ( 1st `  C ) )  -> 
z  e.  Q. )
2420, 23anim12i 338 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  /\  ( C  e.  P.  /\  z  e.  ( 1st `  C ) ) )  ->  ( y  e. 
Q.  /\  z  e.  Q. ) )
2524an4s 588 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  P.  /\  C  e.  P. )  /\  ( y  e.  ( 1st `  B )  /\  z  e.  ( 1st `  C ) ) )  ->  (
y  e.  Q.  /\  z  e.  Q. )
)
26253adantl1 1155 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( y  e.  ( 1st `  B )  /\  z  e.  ( 1st `  C ) ) )  ->  (
y  e.  Q.  /\  z  e.  Q. )
)
2726ad2ant2r 509 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( y  e.  Q.  /\  z  e.  Q. )
)
28 3anass 984 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  <->  ( x  e.  Q.  /\  ( y  e.  Q.  /\  z  e.  Q. ) ) )
2917, 27, 28sylanbrc 417 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )
)
30 simprr 531 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  w  =  ( x  .Q  v ) )
31 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( 1st `  B )  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) )  ->  v  =  ( y  +Q  z ) )
3230, 31anim12i 338 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) ) )
33 oveq2 5930 . . . . . . . . . . . . . . 15  |-  ( v  =  ( y  +Q  z )  ->  (
x  .Q  v )  =  ( x  .Q  ( y  +Q  z
) ) )
3433eqeq2d 2208 . . . . . . . . . . . . . 14  |-  ( v  =  ( y  +Q  z )  ->  (
w  =  ( x  .Q  v )  <->  w  =  ( x  .Q  (
y  +Q  z ) ) ) )
3534biimpac 298 . . . . . . . . . . . . 13  |-  ( ( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( x  .Q  ( y  +Q  z
) ) )
36 distrnqg 7454 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  .Q  ( y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( x  .Q  z
) ) )
3736eqeq2d 2208 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
w  =  ( x  .Q  ( y  +Q  z ) )  <->  w  =  ( ( x  .Q  y )  +Q  (
x  .Q  z ) ) ) )
3835, 37imbitrid 154 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( ( x  .Q  y )  +Q  (
x  .Q  z ) ) ) )
3929, 32, 38sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  ->  w  =  ( (
x  .Q  y )  +Q  ( x  .Q  z ) ) )
40 mulclpr 7639 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
41403adant3 1019 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
4241ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( A  .P.  B
)  e.  P. )
43 mulclpr 7639 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
44433adant2 1018 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
4544ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( A  .P.  C
)  e.  P. )
46 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( 1st `  B )  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) )  ->  y  e.  ( 1st `  B
) )
472, 3genpprecll 7581 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  ->  ( x  .Q  y )  e.  ( 1st `  ( A  .P.  B ) ) ) )
48473adant3 1019 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  ->  ( x  .Q  y )  e.  ( 1st `  ( A  .P.  B ) ) ) )
4948impl 380 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  ( 1st `  A ) )  /\  y  e.  ( 1st `  B
) )  ->  (
x  .Q  y )  e.  ( 1st `  ( A  .P.  B ) ) )
5049adantlrr 483 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  y  e.  ( 1st `  B ) )  -> 
( x  .Q  y
)  e.  ( 1st `  ( A  .P.  B
) ) )
5146, 50sylan2 286 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( x  .Q  y
)  e.  ( 1st `  ( A  .P.  B
) ) )
52 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( 1st `  B )  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) )  ->  z  e.  ( 1st `  C
) )
532, 3genpprecll 7581 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( x  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) )  ->  ( x  .Q  z )  e.  ( 1st `  ( A  .P.  C ) ) ) )
54533adant2 1018 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  ( 1st `  A )  /\  z  e.  ( 1st `  C ) )  ->  ( x  .Q  z )  e.  ( 1st `  ( A  .P.  C ) ) ) )
5554impl 380 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  ( 1st `  A ) )  /\  z  e.  ( 1st `  C
) )  ->  (
x  .Q  z )  e.  ( 1st `  ( A  .P.  C ) ) )
5655adantlrr 483 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  z  e.  ( 1st `  C ) )  -> 
( x  .Q  z
)  e.  ( 1st `  ( A  .P.  C
) ) )
5752, 56sylan2 286 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( x  .Q  z
)  e.  ( 1st `  ( A  .P.  C
) ) )
587, 8genpprecll 7581 . . . . . . . . . . . . 13  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( ( ( x  .Q  y )  e.  ( 1st `  ( A  .P.  B ) )  /\  ( x  .Q  z )  e.  ( 1st `  ( A  .P.  C ) ) )  ->  ( (
x  .Q  y )  +Q  ( x  .Q  z ) )  e.  ( 1st `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) )
5958imp 124 . . . . . . . . . . . 12  |-  ( ( ( ( A  .P.  B )  e.  P.  /\  ( A  .P.  C )  e.  P. )  /\  ( ( x  .Q  y )  e.  ( 1st `  ( A  .P.  B ) )  /\  ( x  .Q  z )  e.  ( 1st `  ( A  .P.  C ) ) ) )  ->  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  e.  ( 1st `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) )
6042, 45, 51, 57, 59syl22anc 1250 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
6139, 60eqeltrd 2273 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  /\  v  =  ( y  +Q  z
) ) )  ->  w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
6261exp32 365 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  (
( y  e.  ( 1st `  B )  /\  z  e.  ( 1st `  C ) )  ->  ( v  =  ( y  +Q  z )  ->  w  e.  ( 1st `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) ) )
6362rexlimdvv 2621 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  ( E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  C ) v  =  ( y  +Q  z
)  ->  w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
6411, 63sylbid 150 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 1st `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  (
v  e.  ( 1st `  ( B  +P.  C
) )  ->  w  e.  ( 1st `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) )
6564exp32 365 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  ( 1st `  A )  ->  (
w  =  ( x  .Q  v )  -> 
( v  e.  ( 1st `  ( B  +P.  C ) )  ->  w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) ) )
6665com34 83 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  ( 1st `  A )  ->  (
v  e.  ( 1st `  ( B  +P.  C
) )  ->  (
w  =  ( x  .Q  v )  ->  w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) ) )
6766impd 254 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  ( 1st `  A )  /\  v  e.  ( 1st `  ( B  +P.  C ) ) )  ->  ( w  =  ( x  .Q  v )  ->  w  e.  ( 1st `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) ) )
6867rexlimdvv 2621 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. x  e.  ( 1st `  A ) E. v  e.  ( 1st `  ( B  +P.  C
) ) w  =  ( x  .Q  v
)  ->  w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
696, 68sylbid 150 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  ->  w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
7069ssrdv 3189 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476    C_ wss 3157   <.cop 3625   ` cfv 5258  (class class class)co 5922   1stc1st 6196   2ndc2nd 6197   Q.cnq 7347    +Q cplq 7349    .Q cmq 7350   P.cnp 7358    +P. cpp 7360    .P. cmp 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-iplp 7535  df-imp 7536
This theorem is referenced by:  distrprg  7655
  Copyright terms: Public domain W3C validator