Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uz11 | Unicode version |
Description: The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.) |
Ref | Expression |
---|---|
uz11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzid 9501 | . . . . 5 | |
2 | eleq2 2234 | . . . . . 6 | |
3 | eluzel2 9492 | . . . . . 6 | |
4 | 2, 3 | syl6bi 162 | . . . . 5 |
5 | 1, 4 | mpan9 279 | . . . 4 |
6 | uzid 9501 | . . . . . . . . . . 11 | |
7 | eleq2 2234 | . . . . . . . . . . 11 | |
8 | 6, 7 | syl5ibr 155 | . . . . . . . . . 10 |
9 | eluzle 9499 | . . . . . . . . . 10 | |
10 | 8, 9 | syl6 33 | . . . . . . . . 9 |
11 | 1, 2 | syl5ib 153 | . . . . . . . . . 10 |
12 | eluzle 9499 | . . . . . . . . . 10 | |
13 | 11, 12 | syl6 33 | . . . . . . . . 9 |
14 | 10, 13 | anim12d 333 | . . . . . . . 8 |
15 | 14 | impl 378 | . . . . . . 7 |
16 | 15 | ancoms 266 | . . . . . 6 |
17 | 16 | anassrs 398 | . . . . 5 |
18 | zre 9216 | . . . . . . 7 | |
19 | zre 9216 | . . . . . . 7 | |
20 | letri3 8000 | . . . . . . 7 | |
21 | 18, 19, 20 | syl2an 287 | . . . . . 6 |
22 | 21 | adantlr 474 | . . . . 5 |
23 | 17, 22 | mpbird 166 | . . . 4 |
24 | 5, 23 | mpdan 419 | . . 3 |
25 | 24 | ex 114 | . 2 |
26 | fveq2 5496 | . 2 | |
27 | 25, 26 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 class class class wbr 3989 cfv 5198 cr 7773 cle 7955 cz 9212 cuz 9487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-apti 7889 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-neg 8093 df-z 9213 df-uz 9488 |
This theorem is referenced by: fzopth 10017 |
Copyright terms: Public domain | W3C validator |