ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uz11 Unicode version

Theorem uz11 9624
Description: The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.)
Assertion
Ref Expression
uz11  |-  ( M  e.  ZZ  ->  (
( ZZ>= `  M )  =  ( ZZ>= `  N
)  <->  M  =  N
) )

Proof of Theorem uz11
StepHypRef Expression
1 uzid 9615 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
2 eleq2 2260 . . . . . 6  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( M  e.  (
ZZ>= `  M )  <->  M  e.  ( ZZ>= `  N )
) )
3 eluzel2 9606 . . . . . 6  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  e.  ZZ )
42, 3biimtrdi 163 . . . . 5  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( M  e.  (
ZZ>= `  M )  ->  N  e.  ZZ )
)
51, 4mpan9 281 . . . 4  |-  ( ( M  e.  ZZ  /\  ( ZZ>= `  M )  =  ( ZZ>= `  N
) )  ->  N  e.  ZZ )
6 uzid 9615 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
7 eleq2 2260 . . . . . . . . . . 11  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( N  e.  (
ZZ>= `  M )  <->  N  e.  ( ZZ>= `  N )
) )
86, 7imbitrrid 156 . . . . . . . . . 10  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  M ) ) )
9 eluzle 9613 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
108, 9syl6 33 . . . . . . . . 9  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( N  e.  ZZ  ->  M  <_  N )
)
111, 2imbitrid 154 . . . . . . . . . 10  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  N ) ) )
12 eluzle 9613 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  <_  M )
1311, 12syl6 33 . . . . . . . . 9  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( M  e.  ZZ  ->  N  <_  M )
)
1410, 13anim12d 335 . . . . . . . 8  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  N  /\  N  <_  M ) ) )
1514impl 380 . . . . . . 7  |-  ( ( ( ( ZZ>= `  M
)  =  ( ZZ>= `  N )  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( M  <_  N  /\  N  <_  M ) )
1615ancoms 268 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( ( ZZ>= `  M
)  =  ( ZZ>= `  N )  /\  N  e.  ZZ ) )  -> 
( M  <_  N  /\  N  <_  M ) )
1716anassrs 400 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  ( ZZ>= `  M )  =  ( ZZ>= `  N
) )  /\  N  e.  ZZ )  ->  ( M  <_  N  /\  N  <_  M ) )
18 zre 9330 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  RR )
19 zre 9330 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  RR )
20 letri3 8107 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
2118, 19, 20syl2an 289 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
2221adantlr 477 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  ( ZZ>= `  M )  =  ( ZZ>= `  N
) )  /\  N  e.  ZZ )  ->  ( M  =  N  <->  ( M  <_  N  /\  N  <_  M ) ) )
2317, 22mpbird 167 . . . 4  |-  ( ( ( M  e.  ZZ  /\  ( ZZ>= `  M )  =  ( ZZ>= `  N
) )  /\  N  e.  ZZ )  ->  M  =  N )
245, 23mpdan 421 . . 3  |-  ( ( M  e.  ZZ  /\  ( ZZ>= `  M )  =  ( ZZ>= `  N
) )  ->  M  =  N )
2524ex 115 . 2  |-  ( M  e.  ZZ  ->  (
( ZZ>= `  M )  =  ( ZZ>= `  N
)  ->  M  =  N ) )
26 fveq2 5558 . 2  |-  ( M  =  N  ->  ( ZZ>=
`  M )  =  ( ZZ>= `  N )
)
2725, 26impbid1 142 1  |-  ( M  e.  ZZ  ->  (
( ZZ>= `  M )  =  ( ZZ>= `  N
)  <->  M  =  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258   RRcr 7878    <_ cle 8062   ZZcz 9326   ZZ>=cuz 9601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-apti 7994
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-neg 8200  df-z 9327  df-uz 9602
This theorem is referenced by:  fzopth  10136
  Copyright terms: Public domain W3C validator