ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uz11 Unicode version

Theorem uz11 9673
Description: The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.)
Assertion
Ref Expression
uz11  |-  ( M  e.  ZZ  ->  (
( ZZ>= `  M )  =  ( ZZ>= `  N
)  <->  M  =  N
) )

Proof of Theorem uz11
StepHypRef Expression
1 uzid 9664 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
2 eleq2 2269 . . . . . 6  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( M  e.  (
ZZ>= `  M )  <->  M  e.  ( ZZ>= `  N )
) )
3 eluzel2 9655 . . . . . 6  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  e.  ZZ )
42, 3biimtrdi 163 . . . . 5  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( M  e.  (
ZZ>= `  M )  ->  N  e.  ZZ )
)
51, 4mpan9 281 . . . 4  |-  ( ( M  e.  ZZ  /\  ( ZZ>= `  M )  =  ( ZZ>= `  N
) )  ->  N  e.  ZZ )
6 uzid 9664 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
7 eleq2 2269 . . . . . . . . . . 11  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( N  e.  (
ZZ>= `  M )  <->  N  e.  ( ZZ>= `  N )
) )
86, 7imbitrrid 156 . . . . . . . . . 10  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  M ) ) )
9 eluzle 9662 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
108, 9syl6 33 . . . . . . . . 9  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( N  e.  ZZ  ->  M  <_  N )
)
111, 2imbitrid 154 . . . . . . . . . 10  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  N ) ) )
12 eluzle 9662 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  <_  M )
1311, 12syl6 33 . . . . . . . . 9  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( M  e.  ZZ  ->  N  <_  M )
)
1410, 13anim12d 335 . . . . . . . 8  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  N  /\  N  <_  M ) ) )
1514impl 380 . . . . . . 7  |-  ( ( ( ( ZZ>= `  M
)  =  ( ZZ>= `  N )  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( M  <_  N  /\  N  <_  M ) )
1615ancoms 268 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( ( ZZ>= `  M
)  =  ( ZZ>= `  N )  /\  N  e.  ZZ ) )  -> 
( M  <_  N  /\  N  <_  M ) )
1716anassrs 400 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  ( ZZ>= `  M )  =  ( ZZ>= `  N
) )  /\  N  e.  ZZ )  ->  ( M  <_  N  /\  N  <_  M ) )
18 zre 9378 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  RR )
19 zre 9378 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  RR )
20 letri3 8155 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
2118, 19, 20syl2an 289 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
2221adantlr 477 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  ( ZZ>= `  M )  =  ( ZZ>= `  N
) )  /\  N  e.  ZZ )  ->  ( M  =  N  <->  ( M  <_  N  /\  N  <_  M ) ) )
2317, 22mpbird 167 . . . 4  |-  ( ( ( M  e.  ZZ  /\  ( ZZ>= `  M )  =  ( ZZ>= `  N
) )  /\  N  e.  ZZ )  ->  M  =  N )
245, 23mpdan 421 . . 3  |-  ( ( M  e.  ZZ  /\  ( ZZ>= `  M )  =  ( ZZ>= `  N
) )  ->  M  =  N )
2524ex 115 . 2  |-  ( M  e.  ZZ  ->  (
( ZZ>= `  M )  =  ( ZZ>= `  N
)  ->  M  =  N ) )
26 fveq2 5578 . 2  |-  ( M  =  N  ->  ( ZZ>=
`  M )  =  ( ZZ>= `  N )
)
2725, 26impbid1 142 1  |-  ( M  e.  ZZ  ->  (
( ZZ>= `  M )  =  ( ZZ>= `  N
)  <->  M  =  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   class class class wbr 4045   ` cfv 5272   RRcr 7926    <_ cle 8110   ZZcz 9374   ZZ>=cuz 9650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-pre-ltirr 8039  ax-pre-apti 8042
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-neg 8248  df-z 9375  df-uz 9651
This theorem is referenced by:  fzopth  10185
  Copyright terms: Public domain W3C validator