ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uz11 Unicode version

Theorem uz11 9745
Description: The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.)
Assertion
Ref Expression
uz11  |-  ( M  e.  ZZ  ->  (
( ZZ>= `  M )  =  ( ZZ>= `  N
)  <->  M  =  N
) )

Proof of Theorem uz11
StepHypRef Expression
1 uzid 9736 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
2 eleq2 2293 . . . . . 6  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( M  e.  (
ZZ>= `  M )  <->  M  e.  ( ZZ>= `  N )
) )
3 eluzel2 9727 . . . . . 6  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  e.  ZZ )
42, 3biimtrdi 163 . . . . 5  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( M  e.  (
ZZ>= `  M )  ->  N  e.  ZZ )
)
51, 4mpan9 281 . . . 4  |-  ( ( M  e.  ZZ  /\  ( ZZ>= `  M )  =  ( ZZ>= `  N
) )  ->  N  e.  ZZ )
6 uzid 9736 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
7 eleq2 2293 . . . . . . . . . . 11  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( N  e.  (
ZZ>= `  M )  <->  N  e.  ( ZZ>= `  N )
) )
86, 7imbitrrid 156 . . . . . . . . . 10  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  M ) ) )
9 eluzle 9734 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
108, 9syl6 33 . . . . . . . . 9  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( N  e.  ZZ  ->  M  <_  N )
)
111, 2imbitrid 154 . . . . . . . . . 10  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  N ) ) )
12 eluzle 9734 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  <_  M )
1311, 12syl6 33 . . . . . . . . 9  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( M  e.  ZZ  ->  N  <_  M )
)
1410, 13anim12d 335 . . . . . . . 8  |-  ( (
ZZ>= `  M )  =  ( ZZ>= `  N )  ->  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  N  /\  N  <_  M ) ) )
1514impl 380 . . . . . . 7  |-  ( ( ( ( ZZ>= `  M
)  =  ( ZZ>= `  N )  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( M  <_  N  /\  N  <_  M ) )
1615ancoms 268 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( ( ZZ>= `  M
)  =  ( ZZ>= `  N )  /\  N  e.  ZZ ) )  -> 
( M  <_  N  /\  N  <_  M ) )
1716anassrs 400 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  ( ZZ>= `  M )  =  ( ZZ>= `  N
) )  /\  N  e.  ZZ )  ->  ( M  <_  N  /\  N  <_  M ) )
18 zre 9450 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  RR )
19 zre 9450 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  RR )
20 letri3 8227 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
2118, 19, 20syl2an 289 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
2221adantlr 477 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  ( ZZ>= `  M )  =  ( ZZ>= `  N
) )  /\  N  e.  ZZ )  ->  ( M  =  N  <->  ( M  <_  N  /\  N  <_  M ) ) )
2317, 22mpbird 167 . . . 4  |-  ( ( ( M  e.  ZZ  /\  ( ZZ>= `  M )  =  ( ZZ>= `  N
) )  /\  N  e.  ZZ )  ->  M  =  N )
245, 23mpdan 421 . . 3  |-  ( ( M  e.  ZZ  /\  ( ZZ>= `  M )  =  ( ZZ>= `  N
) )  ->  M  =  N )
2524ex 115 . 2  |-  ( M  e.  ZZ  ->  (
( ZZ>= `  M )  =  ( ZZ>= `  N
)  ->  M  =  N ) )
26 fveq2 5627 . 2  |-  ( M  =  N  ->  ( ZZ>=
`  M )  =  ( ZZ>= `  N )
)
2725, 26impbid1 142 1  |-  ( M  e.  ZZ  ->  (
( ZZ>= `  M )  =  ( ZZ>= `  N
)  <->  M  =  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083   ` cfv 5318   RRcr 7998    <_ cle 8182   ZZcz 9446   ZZ>=cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111  ax-pre-apti 8114
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-neg 8320  df-z 9447  df-uz 9723
This theorem is referenced by:  fzopth  10257
  Copyright terms: Public domain W3C validator