ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpq Unicode version

Theorem elpq 9714
Description: A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
elpq  |-  ( ( A  e.  QQ  /\  0  <  A )  ->  E. x  e.  NN  E. y  e.  NN  A  =  ( x  / 
y ) )
Distinct variable group:    x, A, y

Proof of Theorem elpq
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elq 9687 . . . . 5  |-  ( A  e.  QQ  <->  E. z  e.  ZZ  E. y  e.  NN  A  =  ( z  /  y ) )
2 rexcom 2658 . . . . 5  |-  ( E. z  e.  ZZ  E. y  e.  NN  A  =  ( z  / 
y )  <->  E. y  e.  NN  E. z  e.  ZZ  A  =  ( z  /  y ) )
31, 2bitri 184 . . . 4  |-  ( A  e.  QQ  <->  E. y  e.  NN  E. z  e.  ZZ  A  =  ( z  /  y ) )
4 breq2 4033 . . . . . . . . . . 11  |-  ( A  =  ( z  / 
y )  ->  (
0  <  A  <->  0  <  ( z  /  y ) ) )
5 zre 9321 . . . . . . . . . . . . . 14  |-  ( z  e.  ZZ  ->  z  e.  RR )
65adantl 277 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  z  e.  RR )
7 nnre 8989 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  y  e.  RR )
87adantr 276 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  y  e.  RR )
9 nngt0 9007 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  0  <  y )
109adantr 276 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  0  <  y )
11 gt0div 8889 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR  /\  y  e.  RR  /\  0  <  y )  ->  (
0  <  z  <->  0  <  ( z  /  y ) ) )
126, 8, 10, 11syl3anc 1249 . . . . . . . . . . . 12  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  <  z  <->  0  <  ( z  / 
y ) ) )
1312bicomd 141 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  <  (
z  /  y )  <->  0  <  z ) )
144, 13sylan9bb 462 . . . . . . . . . 10  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  A  <->  0  <  z ) )
15 elnnz 9327 . . . . . . . . . . . . . . . 16  |-  ( z  e.  NN  <->  ( z  e.  ZZ  /\  0  < 
z ) )
1615simplbi2 385 . . . . . . . . . . . . . . 15  |-  ( z  e.  ZZ  ->  (
0  <  z  ->  z  e.  NN ) )
1716adantl 277 . . . . . . . . . . . . . 14  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  <  z  ->  z  e.  NN ) )
1817adantl 277 . . . . . . . . . . . . 13  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  z  ->  z  e.  NN ) )
1918imp 124 . . . . . . . . . . . 12  |-  ( ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  -> 
z  e.  NN )
20 oveq1 5925 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
x  /  y )  =  ( z  / 
y ) )
2120eqeq2d 2205 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  ( A  =  ( x  /  y )  <->  A  =  ( z  /  y
) ) )
2221adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( A  =  ( z  /  y
)  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  /\  x  =  z )  ->  ( A  =  ( x  /  y )  <-> 
A  =  ( z  /  y ) ) )
23 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  ->  A  =  ( z  /  y ) )
2419, 22, 23rspcedvd 2870 . . . . . . . . . . 11  |-  ( ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  ->  E. x  e.  NN  A  =  ( x  /  y ) )
2524ex 115 . . . . . . . . . 10  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  z  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
2614, 25sylbid 150 . . . . . . . . 9  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  A  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
2726ex 115 . . . . . . . 8  |-  ( A  =  ( z  / 
y )  ->  (
( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  < 
A  ->  E. x  e.  NN  A  =  ( x  /  y ) ) ) )
2827com13 80 . . . . . . 7  |-  ( 0  <  A  ->  (
( y  e.  NN  /\  z  e.  ZZ )  ->  ( A  =  ( z  /  y
)  ->  E. x  e.  NN  A  =  ( x  /  y ) ) ) )
2928impl 380 . . . . . 6  |-  ( ( ( 0  <  A  /\  y  e.  NN )  /\  z  e.  ZZ )  ->  ( A  =  ( z  /  y
)  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
3029rexlimdva 2611 . . . . 5  |-  ( ( 0  <  A  /\  y  e.  NN )  ->  ( E. z  e.  ZZ  A  =  ( z  /  y )  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
3130reximdva 2596 . . . 4  |-  ( 0  <  A  ->  ( E. y  e.  NN  E. z  e.  ZZ  A  =  ( z  / 
y )  ->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  /  y ) ) )
323, 31biimtrid 152 . . 3  |-  ( 0  <  A  ->  ( A  e.  QQ  ->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  / 
y ) ) )
3332impcom 125 . 2  |-  ( ( A  e.  QQ  /\  0  <  A )  ->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  / 
y ) )
34 rexcom 2658 . 2  |-  ( E. x  e.  NN  E. y  e.  NN  A  =  ( x  / 
y )  <->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  /  y ) )
3533, 34sylibr 134 1  |-  ( ( A  e.  QQ  /\  0  <  A )  ->  E. x  e.  NN  E. y  e.  NN  A  =  ( x  / 
y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4029  (class class class)co 5918   RRcr 7871   0cc0 7872    < clt 8054    / cdiv 8691   NNcn 8982   ZZcz 9317   QQcq 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-z 9318  df-q 9685
This theorem is referenced by:  elpqb  9715  logbgcd1irr  15099
  Copyright terms: Public domain W3C validator