Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpq | Unicode version |
Description: A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.) |
Ref | Expression |
---|---|
elpq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq 9524 | . . . . 5 | |
2 | rexcom 2621 | . . . . 5 | |
3 | 1, 2 | bitri 183 | . . . 4 |
4 | breq2 3969 | . . . . . . . . . . 11 | |
5 | zre 9165 | . . . . . . . . . . . . . 14 | |
6 | 5 | adantl 275 | . . . . . . . . . . . . 13 |
7 | nnre 8834 | . . . . . . . . . . . . . 14 | |
8 | 7 | adantr 274 | . . . . . . . . . . . . 13 |
9 | nngt0 8852 | . . . . . . . . . . . . . 14 | |
10 | 9 | adantr 274 | . . . . . . . . . . . . 13 |
11 | gt0div 8735 | . . . . . . . . . . . . 13 | |
12 | 6, 8, 10, 11 | syl3anc 1220 | . . . . . . . . . . . 12 |
13 | 12 | bicomd 140 | . . . . . . . . . . 11 |
14 | 4, 13 | sylan9bb 458 | . . . . . . . . . 10 |
15 | elnnz 9171 | . . . . . . . . . . . . . . . 16 | |
16 | 15 | simplbi2 383 | . . . . . . . . . . . . . . 15 |
17 | 16 | adantl 275 | . . . . . . . . . . . . . 14 |
18 | 17 | adantl 275 | . . . . . . . . . . . . 13 |
19 | 18 | imp 123 | . . . . . . . . . . . 12 |
20 | oveq1 5828 | . . . . . . . . . . . . . 14 | |
21 | 20 | eqeq2d 2169 | . . . . . . . . . . . . 13 |
22 | 21 | adantl 275 | . . . . . . . . . . . 12 |
23 | simpll 519 | . . . . . . . . . . . 12 | |
24 | 19, 22, 23 | rspcedvd 2822 | . . . . . . . . . . 11 |
25 | 24 | ex 114 | . . . . . . . . . 10 |
26 | 14, 25 | sylbid 149 | . . . . . . . . 9 |
27 | 26 | ex 114 | . . . . . . . 8 |
28 | 27 | com13 80 | . . . . . . 7 |
29 | 28 | impl 378 | . . . . . 6 |
30 | 29 | rexlimdva 2574 | . . . . 5 |
31 | 30 | reximdva 2559 | . . . 4 |
32 | 3, 31 | syl5bi 151 | . . 3 |
33 | 32 | impcom 124 | . 2 |
34 | rexcom 2621 | . 2 | |
35 | 33, 34 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wrex 2436 class class class wbr 3965 (class class class)co 5821 cr 7725 cc0 7726 clt 7906 cdiv 8539 cn 8827 cz 9161 cq 9521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 ax-pre-mulext 7844 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-po 4256 df-iso 4257 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-reap 8444 df-ap 8451 df-div 8540 df-inn 8828 df-z 9162 df-q 9522 |
This theorem is referenced by: elpqb 9551 logbgcd1irr 13255 |
Copyright terms: Public domain | W3C validator |