ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpq Unicode version

Theorem elpq 9770
Description: A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
elpq  |-  ( ( A  e.  QQ  /\  0  <  A )  ->  E. x  e.  NN  E. y  e.  NN  A  =  ( x  / 
y ) )
Distinct variable group:    x, A, y

Proof of Theorem elpq
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elq 9743 . . . . 5  |-  ( A  e.  QQ  <->  E. z  e.  ZZ  E. y  e.  NN  A  =  ( z  /  y ) )
2 rexcom 2670 . . . . 5  |-  ( E. z  e.  ZZ  E. y  e.  NN  A  =  ( z  / 
y )  <->  E. y  e.  NN  E. z  e.  ZZ  A  =  ( z  /  y ) )
31, 2bitri 184 . . . 4  |-  ( A  e.  QQ  <->  E. y  e.  NN  E. z  e.  ZZ  A  =  ( z  /  y ) )
4 breq2 4048 . . . . . . . . . . 11  |-  ( A  =  ( z  / 
y )  ->  (
0  <  A  <->  0  <  ( z  /  y ) ) )
5 zre 9376 . . . . . . . . . . . . . 14  |-  ( z  e.  ZZ  ->  z  e.  RR )
65adantl 277 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  z  e.  RR )
7 nnre 9043 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  y  e.  RR )
87adantr 276 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  y  e.  RR )
9 nngt0 9061 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  0  <  y )
109adantr 276 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  0  <  y )
11 gt0div 8943 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR  /\  y  e.  RR  /\  0  <  y )  ->  (
0  <  z  <->  0  <  ( z  /  y ) ) )
126, 8, 10, 11syl3anc 1250 . . . . . . . . . . . 12  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  <  z  <->  0  <  ( z  / 
y ) ) )
1312bicomd 141 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  <  (
z  /  y )  <->  0  <  z ) )
144, 13sylan9bb 462 . . . . . . . . . 10  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  A  <->  0  <  z ) )
15 elnnz 9382 . . . . . . . . . . . . . . . 16  |-  ( z  e.  NN  <->  ( z  e.  ZZ  /\  0  < 
z ) )
1615simplbi2 385 . . . . . . . . . . . . . . 15  |-  ( z  e.  ZZ  ->  (
0  <  z  ->  z  e.  NN ) )
1716adantl 277 . . . . . . . . . . . . . 14  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  <  z  ->  z  e.  NN ) )
1817adantl 277 . . . . . . . . . . . . 13  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  z  ->  z  e.  NN ) )
1918imp 124 . . . . . . . . . . . 12  |-  ( ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  -> 
z  e.  NN )
20 oveq1 5951 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
x  /  y )  =  ( z  / 
y ) )
2120eqeq2d 2217 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  ( A  =  ( x  /  y )  <->  A  =  ( z  /  y
) ) )
2221adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( A  =  ( z  /  y
)  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  /\  x  =  z )  ->  ( A  =  ( x  /  y )  <-> 
A  =  ( z  /  y ) ) )
23 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  ->  A  =  ( z  /  y ) )
2419, 22, 23rspcedvd 2883 . . . . . . . . . . 11  |-  ( ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  ->  E. x  e.  NN  A  =  ( x  /  y ) )
2524ex 115 . . . . . . . . . 10  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  z  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
2614, 25sylbid 150 . . . . . . . . 9  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  A  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
2726ex 115 . . . . . . . 8  |-  ( A  =  ( z  / 
y )  ->  (
( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  < 
A  ->  E. x  e.  NN  A  =  ( x  /  y ) ) ) )
2827com13 80 . . . . . . 7  |-  ( 0  <  A  ->  (
( y  e.  NN  /\  z  e.  ZZ )  ->  ( A  =  ( z  /  y
)  ->  E. x  e.  NN  A  =  ( x  /  y ) ) ) )
2928impl 380 . . . . . 6  |-  ( ( ( 0  <  A  /\  y  e.  NN )  /\  z  e.  ZZ )  ->  ( A  =  ( z  /  y
)  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
3029rexlimdva 2623 . . . . 5  |-  ( ( 0  <  A  /\  y  e.  NN )  ->  ( E. z  e.  ZZ  A  =  ( z  /  y )  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
3130reximdva 2608 . . . 4  |-  ( 0  <  A  ->  ( E. y  e.  NN  E. z  e.  ZZ  A  =  ( z  / 
y )  ->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  /  y ) ) )
323, 31biimtrid 152 . . 3  |-  ( 0  <  A  ->  ( A  e.  QQ  ->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  / 
y ) ) )
3332impcom 125 . 2  |-  ( ( A  e.  QQ  /\  0  <  A )  ->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  / 
y ) )
34 rexcom 2670 . 2  |-  ( E. x  e.  NN  E. y  e.  NN  A  =  ( x  / 
y )  <->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  /  y ) )
3533, 34sylibr 134 1  |-  ( ( A  e.  QQ  /\  0  <  A )  ->  E. x  e.  NN  E. y  e.  NN  A  =  ( x  / 
y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   E.wrex 2485   class class class wbr 4044  (class class class)co 5944   RRcr 7924   0cc0 7925    < clt 8107    / cdiv 8745   NNcn 9036   ZZcz 9372   QQcq 9740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-z 9373  df-q 9741
This theorem is referenced by:  elpqb  9771  logbgcd1irr  15439
  Copyright terms: Public domain W3C validator