ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpq Unicode version

Theorem elpq 9648
Description: A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
elpq  |-  ( ( A  e.  QQ  /\  0  <  A )  ->  E. x  e.  NN  E. y  e.  NN  A  =  ( x  / 
y ) )
Distinct variable group:    x, A, y

Proof of Theorem elpq
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elq 9622 . . . . 5  |-  ( A  e.  QQ  <->  E. z  e.  ZZ  E. y  e.  NN  A  =  ( z  /  y ) )
2 rexcom 2641 . . . . 5  |-  ( E. z  e.  ZZ  E. y  e.  NN  A  =  ( z  / 
y )  <->  E. y  e.  NN  E. z  e.  ZZ  A  =  ( z  /  y ) )
31, 2bitri 184 . . . 4  |-  ( A  e.  QQ  <->  E. y  e.  NN  E. z  e.  ZZ  A  =  ( z  /  y ) )
4 breq2 4008 . . . . . . . . . . 11  |-  ( A  =  ( z  / 
y )  ->  (
0  <  A  <->  0  <  ( z  /  y ) ) )
5 zre 9257 . . . . . . . . . . . . . 14  |-  ( z  e.  ZZ  ->  z  e.  RR )
65adantl 277 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  z  e.  RR )
7 nnre 8926 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  y  e.  RR )
87adantr 276 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  y  e.  RR )
9 nngt0 8944 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  0  <  y )
109adantr 276 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  0  <  y )
11 gt0div 8827 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR  /\  y  e.  RR  /\  0  <  y )  ->  (
0  <  z  <->  0  <  ( z  /  y ) ) )
126, 8, 10, 11syl3anc 1238 . . . . . . . . . . . 12  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  <  z  <->  0  <  ( z  / 
y ) ) )
1312bicomd 141 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  <  (
z  /  y )  <->  0  <  z ) )
144, 13sylan9bb 462 . . . . . . . . . 10  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  A  <->  0  <  z ) )
15 elnnz 9263 . . . . . . . . . . . . . . . 16  |-  ( z  e.  NN  <->  ( z  e.  ZZ  /\  0  < 
z ) )
1615simplbi2 385 . . . . . . . . . . . . . . 15  |-  ( z  e.  ZZ  ->  (
0  <  z  ->  z  e.  NN ) )
1716adantl 277 . . . . . . . . . . . . . 14  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  <  z  ->  z  e.  NN ) )
1817adantl 277 . . . . . . . . . . . . 13  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  z  ->  z  e.  NN ) )
1918imp 124 . . . . . . . . . . . 12  |-  ( ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  -> 
z  e.  NN )
20 oveq1 5882 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
x  /  y )  =  ( z  / 
y ) )
2120eqeq2d 2189 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  ( A  =  ( x  /  y )  <->  A  =  ( z  /  y
) ) )
2221adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( A  =  ( z  /  y
)  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  /\  x  =  z )  ->  ( A  =  ( x  /  y )  <-> 
A  =  ( z  /  y ) ) )
23 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  ->  A  =  ( z  /  y ) )
2419, 22, 23rspcedvd 2848 . . . . . . . . . . 11  |-  ( ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  ->  E. x  e.  NN  A  =  ( x  /  y ) )
2524ex 115 . . . . . . . . . 10  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  z  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
2614, 25sylbid 150 . . . . . . . . 9  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  A  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
2726ex 115 . . . . . . . 8  |-  ( A  =  ( z  / 
y )  ->  (
( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  < 
A  ->  E. x  e.  NN  A  =  ( x  /  y ) ) ) )
2827com13 80 . . . . . . 7  |-  ( 0  <  A  ->  (
( y  e.  NN  /\  z  e.  ZZ )  ->  ( A  =  ( z  /  y
)  ->  E. x  e.  NN  A  =  ( x  /  y ) ) ) )
2928impl 380 . . . . . 6  |-  ( ( ( 0  <  A  /\  y  e.  NN )  /\  z  e.  ZZ )  ->  ( A  =  ( z  /  y
)  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
3029rexlimdva 2594 . . . . 5  |-  ( ( 0  <  A  /\  y  e.  NN )  ->  ( E. z  e.  ZZ  A  =  ( z  /  y )  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
3130reximdva 2579 . . . 4  |-  ( 0  <  A  ->  ( E. y  e.  NN  E. z  e.  ZZ  A  =  ( z  / 
y )  ->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  /  y ) ) )
323, 31biimtrid 152 . . 3  |-  ( 0  <  A  ->  ( A  e.  QQ  ->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  / 
y ) ) )
3332impcom 125 . 2  |-  ( ( A  e.  QQ  /\  0  <  A )  ->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  / 
y ) )
34 rexcom 2641 . 2  |-  ( E. x  e.  NN  E. y  e.  NN  A  =  ( x  / 
y )  <->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  /  y ) )
3533, 34sylibr 134 1  |-  ( ( A  e.  QQ  /\  0  <  A )  ->  E. x  e.  NN  E. y  e.  NN  A  =  ( x  / 
y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4004  (class class class)co 5875   RRcr 7810   0cc0 7811    < clt 7992    / cdiv 8629   NNcn 8919   ZZcz 9253   QQcq 9619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-po 4297  df-iso 4298  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-z 9254  df-q 9620
This theorem is referenced by:  elpqb  9649  logbgcd1irr  14388
  Copyright terms: Public domain W3C validator