ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpq Unicode version

Theorem elpq 9586
Description: A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
elpq  |-  ( ( A  e.  QQ  /\  0  <  A )  ->  E. x  e.  NN  E. y  e.  NN  A  =  ( x  / 
y ) )
Distinct variable group:    x, A, y

Proof of Theorem elpq
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elq 9560 . . . . 5  |-  ( A  e.  QQ  <->  E. z  e.  ZZ  E. y  e.  NN  A  =  ( z  /  y ) )
2 rexcom 2630 . . . . 5  |-  ( E. z  e.  ZZ  E. y  e.  NN  A  =  ( z  / 
y )  <->  E. y  e.  NN  E. z  e.  ZZ  A  =  ( z  /  y ) )
31, 2bitri 183 . . . 4  |-  ( A  e.  QQ  <->  E. y  e.  NN  E. z  e.  ZZ  A  =  ( z  /  y ) )
4 breq2 3986 . . . . . . . . . . 11  |-  ( A  =  ( z  / 
y )  ->  (
0  <  A  <->  0  <  ( z  /  y ) ) )
5 zre 9195 . . . . . . . . . . . . . 14  |-  ( z  e.  ZZ  ->  z  e.  RR )
65adantl 275 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  z  e.  RR )
7 nnre 8864 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  y  e.  RR )
87adantr 274 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  y  e.  RR )
9 nngt0 8882 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  0  <  y )
109adantr 274 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  0  <  y )
11 gt0div 8765 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR  /\  y  e.  RR  /\  0  <  y )  ->  (
0  <  z  <->  0  <  ( z  /  y ) ) )
126, 8, 10, 11syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  <  z  <->  0  <  ( z  / 
y ) ) )
1312bicomd 140 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  <  (
z  /  y )  <->  0  <  z ) )
144, 13sylan9bb 458 . . . . . . . . . 10  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  A  <->  0  <  z ) )
15 elnnz 9201 . . . . . . . . . . . . . . . 16  |-  ( z  e.  NN  <->  ( z  e.  ZZ  /\  0  < 
z ) )
1615simplbi2 383 . . . . . . . . . . . . . . 15  |-  ( z  e.  ZZ  ->  (
0  <  z  ->  z  e.  NN ) )
1716adantl 275 . . . . . . . . . . . . . 14  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  <  z  ->  z  e.  NN ) )
1817adantl 275 . . . . . . . . . . . . 13  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  z  ->  z  e.  NN ) )
1918imp 123 . . . . . . . . . . . 12  |-  ( ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  -> 
z  e.  NN )
20 oveq1 5849 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
x  /  y )  =  ( z  / 
y ) )
2120eqeq2d 2177 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  ( A  =  ( x  /  y )  <->  A  =  ( z  /  y
) ) )
2221adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ( A  =  ( z  /  y
)  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  /\  x  =  z )  ->  ( A  =  ( x  /  y )  <-> 
A  =  ( z  /  y ) ) )
23 simpll 519 . . . . . . . . . . . 12  |-  ( ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  ->  A  =  ( z  /  y ) )
2419, 22, 23rspcedvd 2836 . . . . . . . . . . 11  |-  ( ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  /\  0  <  z )  ->  E. x  e.  NN  A  =  ( x  /  y ) )
2524ex 114 . . . . . . . . . 10  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  z  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
2614, 25sylbid 149 . . . . . . . . 9  |-  ( ( A  =  ( z  /  y )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  ( 0  <  A  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
2726ex 114 . . . . . . . 8  |-  ( A  =  ( z  / 
y )  ->  (
( y  e.  NN  /\  z  e.  ZZ )  ->  ( 0  < 
A  ->  E. x  e.  NN  A  =  ( x  /  y ) ) ) )
2827com13 80 . . . . . . 7  |-  ( 0  <  A  ->  (
( y  e.  NN  /\  z  e.  ZZ )  ->  ( A  =  ( z  /  y
)  ->  E. x  e.  NN  A  =  ( x  /  y ) ) ) )
2928impl 378 . . . . . 6  |-  ( ( ( 0  <  A  /\  y  e.  NN )  /\  z  e.  ZZ )  ->  ( A  =  ( z  /  y
)  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
3029rexlimdva 2583 . . . . 5  |-  ( ( 0  <  A  /\  y  e.  NN )  ->  ( E. z  e.  ZZ  A  =  ( z  /  y )  ->  E. x  e.  NN  A  =  ( x  /  y ) ) )
3130reximdva 2568 . . . 4  |-  ( 0  <  A  ->  ( E. y  e.  NN  E. z  e.  ZZ  A  =  ( z  / 
y )  ->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  /  y ) ) )
323, 31syl5bi 151 . . 3  |-  ( 0  <  A  ->  ( A  e.  QQ  ->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  / 
y ) ) )
3332impcom 124 . 2  |-  ( ( A  e.  QQ  /\  0  <  A )  ->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  / 
y ) )
34 rexcom 2630 . 2  |-  ( E. x  e.  NN  E. y  e.  NN  A  =  ( x  / 
y )  <->  E. y  e.  NN  E. x  e.  NN  A  =  ( x  /  y ) )
3533, 34sylibr 133 1  |-  ( ( A  e.  QQ  /\  0  <  A )  ->  E. x  e.  NN  E. y  e.  NN  A  =  ( x  / 
y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753    < clt 7933    / cdiv 8568   NNcn 8857   ZZcz 9191   QQcq 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-z 9192  df-q 9558
This theorem is referenced by:  elpqb  9587  logbgcd1irr  13525
  Copyright terms: Public domain W3C validator